

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Additional Packages

There are many additional Emacs packages that can enhance your Clojure programming
experience. The majority of the minor modes listed here should be enabled for both
cider-repl-mode and clojure-mode for optimal effects.

clj-refactor

clr-refactor [https://github.com/clojure-emacs/clj-refactor.el] builds on top
of clojure-mode and CIDER and adds a ton of extra functionality (e.g. the
ability to thread/unthread expression, find and replace usages, introduce let
bindings, extract function and so on).

A full list of features is available
here [https://github.com/clojure-emacs/clj-refactor.el/wiki].

We hope to incorporate some of its features into clojure-mode and CIDER themselves
down the road.

Make sure that the version of clj-refactor you’ve installed is compatible with
your CIDER version.

helm-cider

helm-cider [https://github.com/clojure-emacs/helm-cider] provides Helm
interface for certain CIDER commands (e.g. cider-apropos).

cider-hydra

cider-hydra [https://github.com/clojure-emacs/cider-hydra] provides a nice way
to navigate groups of related CIDER commands.

You can think of it as a fancier which-key [https://github.com/justbur/emacs-which-key].

squiggly-clojure

squiggly-clojure [https://github.com/clojure-emacs/squiggly-clojure] is a
Flycheck checker for Clojure, using tools like
eastwood [https://github.com/jonase/eastwood],
core.typed [http://typedclojure.org/] and
kibit [https://github.com/jonase/kibit].

sayid

sayid [http://bpiel.github.io/sayid/] is a powerful alternative of CIDER’s
built-in basic tracing functionality.

Inf-clojure

This package provides basic interaction with a Clojure subprocess (REPL). It’s
based on ideas from the popular inferior-lisp package.

inf-clojure [https://github.com/clojure-emacs/inf-clojure] has two components -
a nice Clojure REPL with auto-completion and a minor mode
(inf-clojure-minor-mode), which extends clojure-mode with commands to evaluate
forms directly in the REPL.

It’s basically a simple alternative of CIDER, which provides a subset of CIDER’s
functionality.

subword-mode

Enabling CamelCase support for editing commands(like
forward-word, backward-word, etc) in the REPL is quite useful since
we often have to deal with Java class and method names. The built-in
Emacs minor mode subword-mode provides such functionality:

(add-hook 'cider-repl-mode-hook #'subword-mode)

Paredit

The use of paredit [http://mumble.net/~campbell/emacs/paredit.html]
when editing Clojure (or any other Lisp) code is highly
recommended. You’re probably using it already in your clojure-mode
buffers (if you’re not you probably should). You might also want to
enable paredit in the REPL buffer as well:

(add-hook 'cider-repl-mode-hook #'paredit-mode)

Smartparens

smartparens [https://github.com/Fuco1/smartparens] is an excellent alternative
to paredit. Many Clojure hackers have adopted it recently and you might want
to give it a try as well. To enable smartparens in the REPL buffer use the
following code:

(add-hook 'cider-repl-mode-hook #'smartparens-strict-mode)

rainbow-delimiters

RainbowDelimiters [https://github.com/Fanael/rainbow-delimiters] is a minor
mode which highlights parentheses, brackets, and braces according to their
depth. Each successive level is highlighted in a different color. This makes it
easy to spot matching delimiters, orient yourself in the code, and tell which
statements are at a given depth. Assuming you’ve already installed
RainbowDelimiters you can enable it in the REPL like this:

(add-hook 'cider-repl-mode-hook #'rainbow-delimiters-mode)

eval-sexp-fu

eval-sexp-fu [https://github.com/hchbaw/eval-sexp-fu.el] provides some visual
feedback when evaluating expressions. cider-eval-sexp-fu [https://github.com/clojure-emacs/cider-eval-sexp-fu] provides
CIDER integration for eval-sexp-fu.

(require 'cider-eval-sexp-fu)

Additional Resources

Quick reference

A single-page quick reference PDF for CIDER commands is available
here. This PDF can be created manually by running
pdflatex on the CIDER refcard LaTeX file.

Demos

	Deep Dive into CIDER [https://www.youtube.com/watch?v=aYA4AAjLfT0] - an overview of CIDER’s essential features

	Emacs & Clojure, A Lispy Love Affair [https://www.youtube.com/watch?v=O6g5C4jUCUc] - an overview of all popular Emacs packages for Clojure development (including CIDER)

Presentations

	The Evolution of the Emacs tooling for Clojure [https://www.youtube.com/watch?v=4X-1fJm25Ww&list=PLZdCLR02grLoc322bYirANEso3mmzvCiI&index=6] -
presented at Clojure/conj 2014; dedicated to the origin and the architecture
of CIDER and related tooling

	CIDER: The Journey so Far and the Road Ahead [https://skillsmatter.com/skillscasts/7225-cider-the-journey-so-far-and-the-road-ahead] -
presented at ClojureX 2015; dedicated to CIDER 0.9 and 0.10 and the future of
the project.

	A Few Pints of CIDER [https://www.youtube.com/watch?v=3Q7APa2Htns&list=PLPgnbBCmP6ZMfHPJ4yMwuoLEZvEe5LVe8] - presented at Clojure Remote 2016; dedicated
to CIDER 0.11; features a 10-minute live demo of some cool CIDER features.

	CIDER: Inside the Brewery [https://www.youtube.com/watch?v=8wLwbpCxRf0&list=PLZdCLR02grLq4e8-1P2JNHBKUOLFTX3kb] - presented at Clojure/West 2016;
dedicated to CIDER 0.12.

Podcasts

	Cognicast’s episode on CIDER [http://blog.cognitect.com/cognicast/080]

	defn’s episode on CIDER [https://soundcloud.com/defn-771544745/36-a-long-glass-of-cider-with-bozhidar-batsov-aka-bbatsov]

Caveats

CIDER is certainly not perfect and has some limitations that everyone
should be aware of.

ClojureScript limitations

Currently, the following features are not supported for ClojureScript
development:

	Grimoire lookup

	Reloading

	Running tests

	Tracing

	Debugging (check out this ticket [https://github.com/clojure-emacs/cider/issues/1416] dedicated to porting the debugger to ClojureScript)

	Enlighten

There is currently no support for both Clojure and ClojureScript evaluation in
the same nREPL session. If Piggieback is active, code evaluation and all
features will assume ClojureScript.

Var Metadata

Currently var metadata about the location of the var’s definition within the
ClojureScript source code (file, line & column) is set only when evaluating the
entire source buffer (C-c C-k). All other interactive code evaluation
commands (e.g. C-c C-e) don’t set this metadata and you won’t be able
to use commands like find-var on such vars. This is a limitation of nREPL and
Piggieback, that’s beyond CIDER. You can find some discussions on the subject
here [http://dev.clojure.org/jira/browse/NREPL-59] and
here [https://github.com/clojure-emacs/cider/issues/830].

Microsoft Windows

Line separators

On Microsoft Windows the JVM default line separator string is \r\n
which can appear in Emacs as ^M characters at the end of lines
printed out by the JVM. One option is to set the
buffer-display-table to not show these characters as detailed
here [http://stackoverflow.com/questions/10098925/m-character-showing-in-clojure-slime-repl/11787550#11787550]
(changing slime-repl-mode-hook to
cider-repl-mode-hook). Alternatively, setting the system property
line.separator to \n at JVM startup will stop the carriage return
from being printed and will fix output in all cider buffers. To do so
add "-Dline.separator=\"\n\"" to :jvm-opts in
~/.lein/profiles.clj.

Definition lookup in jar files

In order for source lookup commands to work with .jar files you’ll need to
install either 7zip [http://www.7-zip.org/] or pkunzip and add its
installation folder to Emacs’s exec-path. Here’s an example:

(add-to-list 'exec-path "C:/Program Files/7-Zip")

powershell.el

The powershell inferior shell mode truncates CIDER’s REPL output when
loaded. As a workaround remove

(require 'powershell)

from your Emacs config.

ClojureCLR Support

CIDER currently doesn’t support ClojureCLR. The reasons for this are the following:

	nREPL itself runs only on the JVM (because it leverages Java APIs
internally). There’s an
nREPL port for ClojureCLR [https://github.com/clojure/clr.tools.nrepl], but
it’s not actively maintained and it doesn’t behave like the Clojure nREPL.

	cider-nrepl uses a lot of Java code internally itself.

Those issues are not insurmountable, but are beyond the scope of our current roadmap.
If someone would like to tackle them, we’d be happy to provide assistance.

Injecting dependencies and Leiningen pedantic: abort mode

Because injection currently creates an override of the nREPL dependency that
Leingingen also pulls in starting up the REPL will fail if :pedantic? :abort
is set. There are several ways to address this:

	Remove the :pedantic? :abort setting.

	Switch off injecting the dependencies with setting cider-inject-dependencies-at-jack-in to nil and
provide the dependencies by editing your ~/.lein/profiles.clj as described in
the standalone REPL section.

	Adjust the value of cider-jack-in-dependencies, so it includes the same nREPL value as the
one that’s bundled with Leiningen.

ClojureScript

CIDER works well with ClojureScript, but not all CIDER features are
available in ClojureScript (yet). For instance, the test runner and
debugger are currently Clojure-only features. Unlike the Clojure
ecosystem that is dominated by Leiningen and Boot, the ClojureScript
ecosystem has a number of different choices for REPLs. You’ll have to
decide which one you want to run and how you want CIDER to interact
with it. This chapter describes some of the more common choices
and the configurations required to get them working.

Piggieback

ClojureScript support relies on the piggieback [https://github.com/nrepl/piggieback] nREPL middleware
being present in your REPL session. There’s one exception to this,
though: shadow-cljs [https://github.com/thheller/shadow-cljs]. It has its own nREPL middleware and doesn’t rely
on piggieback at all.

If cider-inject-dependencies-at-jack-in is enabled, which it is by
default, then piggieback will be automatically added and configured
for your project when doing cider-jack-in-cljs.

If cider-inject-dependencies-at-jack-in is disabled or you’re going
to connect to an already running nREPL server using
cider-connect-cljs, use the configuration in the following section.

Manual Piggieback Setup

To setup piggieback, add the following dependencies to your project
(project.clj in a Leiningen based project or build.boot in a Boot
project):

;; use whatever are the most recent versions here
[cider/piggieback "0.4.0"]
[org.clojure/clojure "1.9.0"]

as well as piggieback nREPL middleware:

in project.clj:

:repl-options {:nrepl-middleware [cider.piggieback/wrap-cljs-repl]}

or in build.boot:

(task-options!
 repl {:middleware '[cider.piggieback/wrap-cljs-repl]})

Starting a ClojureScript REPL

!!! Tip

There are many ClojureScript REPLs available, each offering a
different set of capabilities and features. As background for this
section, you might want to read [this awesome
article](https://lambdaisland.com/guides/clojure-repls/clojurescript-repls)
before proceeding.

Open a file in your project and type M-x
cider-jack-in-cljs RET. This will start up the nREPL
server and create a ClojureScript REPL buffer.

!!! Note

Prior to CIDER 0.18, `cider-jack-in-cljs` would create both a Clojure and
a ClojureScript REPL. In CIDER 0.18+ if you want to create both REPLs
you'll have to use `cider-jack-in-clj&cljs` instead.

When you have a combination of Clojure and ClojureScript REPLs, CIDER
will automatically direct all the usual CIDER commands to the
appropriate REPL based on whether you’re currently visitng a .clj or
.cljs file.

cider-jack-in-cljs will prompt you for the type of ClojureScript
REPL you want to start. Keep in mind that some of the REPLs will
require you to configure additional setup. For example, you’ll need to
have Node.js installed to be able to start a Node REPL.

If you frequently use the same ClojureScript REPL, you can set
cider-default-cljs-repl and CIDER will skip the prompt and use this
instead. For example, the following will make Nashorn the default:

(setq cider-default-cljs-repl 'nashorn)

All supported ClojureScript REPLs are stored in
cider-cljs-repl-types. If you need to extend it, you should use
cider-register-cljs-repl-type in your Emacs configuration.

(cider-register-cljs-repl-type 'super-cljs "(do (...))" optional-requirements-function)

You can also modify the known ClojureScript REPLs on a per-project basis using
.dir-locals.el:

;; replace the list of REPLs types and set some default
((nil
 (cider-default-cljs-repl . super-cljs)
 (cider-cljs-repl-types . ((super-cljs "(do (foo) (bar))")))))

;; modify the list of known REPLs and set some default
((nil
 (eval . (cider-register-cljs-repl-type 'super-cljs "(do (foo) (bar))"))
 (cider-default-cljs-repl . super-cljs)))

If you already have a Clojure REPL running and want to add a
ClojureScript REPL, you can invoke
cider-jack-in-sibling-clojurescript to add it.

The following sections describe the configurations for several common
CloudScript REPL use cases.

Browser-Connected ClojureScript REPL

Using Weasel, you can also have a browser-connected REPL.

	Add [weasel "0.7.0"] to your project’s :dependencies.

	Type M-x cider-jack-in-cljs RET and choose
the Weasel option when prompted about the ClojureScript REPL type you want
to use.

	Add this to your ClojureScript code:

(ns my.cljs.core
 (:require [weasel.repl :as repl]))
(repl/connect "ws://localhost:9001")

	Open a file in your project and type M-x cider-jack-in-cljs.

Provided that a Piggieback-enabled ClojureScript environment is active in your
REPL session, code loading and evaluation will work seamlessly regardless of the
presence of the cider-nrepl middleware. If the middleware is present then most
other features of CIDER will also be enabled (including code completion,
documentation lookup, the namespace browser, and macroexpansion).

Browser-Connected ClojureScript REPL in Boot Projects

	Add this to your dependencies in build.boot:

[adzerk/boot-cljs "X.Y.Z" :scope "test"]
[adzerk/boot-cljs-repl "X.Y.Z" :scope "test"]
[pandeiro/boot-http "X.Y.Z" :scope "test"]
[weasel "0.7.0" :scope "test"]
[cider/piggieback "0.4.0" :scope "test"] ; not needed for cider-jack-in-cljs

and this at the end of build.boot:

(require
 '[adzerk.boot-cljs :refer [cljs]]
 '[adzerk.boot-cljs-repl :refer [cljs-repl]]
 '[pandeiro.boot-http :refer [serve]])

(deftask dev []
 (comp (serve)
 (watch)
 (cljs-repl) ; order is important!!
 (cljs)))

	Type M-x customize-variable RET cider-boot-parameters
and insert dev.

	Open a file in your project and type M-x cider-jack-in-cljs.

	Connect to the running server with your browser. The address is printed on the terminal, but it’s probably http://localhost:3000.

For more information visit boot-cljs-repl [https://github.com/adzerk-oss/boot-cljs-repl].

Using Figwheel (Leiningen-only)

!!! Warning

This has been deprecated in favour of using `figwheel-main`. Check out
the instructions in the next section.

You can also use Figwheel [https://github.com/bhauman/lein-figwheel] with CIDER.

	Set up Figwheel as normal, but make sure :cljsbuild and :figwheel settings are
in the root of your Leiningen project definition.

	Add these to your dev :dependencies:

[cider/piggieback "0.4.0"] ; not needed for cider-jack-in-cljs
[figwheel-sidecar "0.5.19"] ; use here whatever the current version of figwheel is

!!! Warning

Keep in mind that CIDER does not support versions versions of Piggieback older than 0.4. Make sure that you use a compatible version of Figwheel.

	Add this to your dev :repl-options (not needed for cider-jack-in-cljs):

:nrepl-middleware [cider.piggieback/wrap-cljs-repl]

	Start the REPL with cider-jack-in-cljs (C-c C-x (C-)j (C-)s). Select
figwheel when prompted for the ClojureScript REPL type.

	Open a browser to the Figwheel URL so that it can connect to your application.

You should also check out
Figwheel’s wiki [https://github.com/bhauman/lein-figwheel/wiki/Using-the-Figwheel-REPL-within-NRepl].

Using Figwheel-main

!!! Note

The instructions here assume you're using Leiningen. Adapting them to your
favourite build tool is up to you.

You can also use Figwheel-main [https://github.com/bhauman/figwheel-main] with CIDER.

	Add this to your dev :dependencies (not needed for cider-jack-in-cljs):

[cider/piggieback "0.4.0"]

	Add this to your dev :repl-options (not needed for cider-jack-in-cljs):

:nrepl-middleware [cider.piggieback/wrap-cljs-repl]

	Start the REPL with cider-jack-in-cljs (C-c C-x (C-)j
(C-)s). When CIDER prompts about the ClojureScript REPL type,
type figwheel-main.

	Select the Figwheel build to run when prompted for it. (e.g. :dev).

Using shadow-cljs

Provided you’ve configured your project correctly, you can simply use
cider-jack-in-cljs for shadow-cljs.

This will automatically start the shadow-cljs server and connect to
it. You’ll also be prompted for the build to use.

Alternatively you can start the server manually with something like:

$ npx shadow-cljs server

And connect to it with cider-connect.

If you already have a running server watching a build (for instance
you have already run npx shadow-cljs watch :dev), you can use the
shadow-select CLJS REPL and specify :dev when prompted.

Working with .cljc files

Ordinarily, CIDER dispatches code from clj files to Clojure REPLs
and cljs files to ClojureScript REPLs. Butcljc files have two
possible connection targets, both of which are valid. So, by default,
CIDER tries to evaluate cljc files in all matching connection
buffers, both clj and cljs, if present.

Thus, if you’re evaluating the code (+ 2 2) in a cljc file and you
have both an active Clojure and ClojureScript REPL then the code is
going to be evaluated twice, once in each of the REPLs. In fact, you
can create multiple clj and cljs sibling connections (C-c C-x C-s
C-s/j) within a CIDER session and evaluation will be directed
into all REPLs simultaneously. See Managing
Connections for more details.

Code Completion

CIDER provides intelligent code completion for both source buffers (powered by
cider-mode) and REPL buffers.

!!! Note

Internally CIDER leverages
[compliment](https://github.com/alexander-yakushev/compliment) for Clojure and
[cljs-tooling](https://github.com/clojure-emacs/cljs-tooling) for ClojureScript.
Improvements to the two libraries automatically translate to improvements in CIDER.

Standard completion

Out-of-the box CIDER uses the standard Emacs tooling for code completion. When you
press TAB or M-TAB you’ll get completion candidates in a
dedicated buffer.

[image: _images/code_completion.png]Code Completion

Auto-completion

While the standard Emacs tooling works just fine, we suggest that
CIDER users consider using
company-mode [http://company-mode.github.io/] instead. Company mode
can be used for auto-completion for both source code and REPL buffers.
To install company-mode:

M-x package-install RET company RET

After installation, you can turn on company-mode globally:

(global-company-mode)

or through mode-specific hooks:

(add-hook 'cider-repl-mode-hook #'company-mode)
(add-hook 'cider-mode-hook #'company-mode)

When company-mode is enabled, it will receive completion information
from cider-complete-at-point and requires no additional setup or plugins.

If you’d prefer to trigger completions manually you can add this to your config:

(setq company-idle-delay nil) ; never start completions automatically
(global-set-key (kbd "M-TAB") #'company-complete) ; use M-TAB, a.k.a. C-M-i, as manual trigger

To make TAB complete, without losing the ability to manually indent,
you can add this to your config:

(global-set-key (kbd "TAB") #'company-indent-or-complete-common)

Fuzzy candidate matching

By default company-mode will provide completion candidates with the
assumption that whatever you’ve typed so far is a prefix of what
you’re really trying to type. For example, if you type map- then
you’ll only get completion candidates that have map- as the
beginning of their names. Sometimes, you don’t know the exact prefix
for the item you want to type. In this case, you can get
CIDER-specific “fuzzy completion” by adding:

(add-hook 'cider-repl-mode-hook #'cider-company-enable-fuzzy-completion)
(add-hook 'cider-mode-hook #'cider-company-enable-fuzzy-completion)

Now, company-mode will accept certain fuzziness when matching
candidates against the prefix. For example, typing mp will show you
map-indexed as one of the possible completion candidates and cji
will complete to clojure.java.io. Different completion examples are
shown
here [https://github.com/alexander-yakushev/compliment/wiki/Examples].

Completion annotations

Completion candidates will be annotated by default with an abbreviation
corresponding to their type, and (contextually) their namespace. The function
used to format the annotation can be configured by
cider-annotate-completion-function. The abbreviations used are configured by
cider-completion-annotations-alist and the context in which their namespace is
included is configured by cider-completion-annotations-include-ns.

[image: _images/completion-annotations.png]Completion Annotations

!!! Tip

Completion annotations can be disabled by setting
`cider-annotate-completion-candidates` to `nil`.

Updating stale classes and methods cache

Sometimes, the completion fails to recognize new classes that came with
dependencies that were loaded dynamically after the REPL has started (e.g. via
Boot). Executing M-x cider-completion-flush-caches (or going through the menu
CIDER Interaction->Misc->Flush completion cache) forces the completion backend
to re-read all classes it can find on the classpath.

Debugging

CIDER ships with a powerful interactive Clojure debugger inspired by Emacs’s own
Edebug [http://www.gnu.org/software/emacs/manual/html_node/elisp/Edebug.html]. You’re going to love it!

[image: _images/cider_debugger.gif]CIDER Debugger

!!! Warning “ClojureScript Support”

The debugger currently **does not** support ClojureScript. See
[this issue](https://github.com/clojure-emacs/cider/issues/1416)
for more details.

Using the Debugger

During normal CIDER development, it’s common for a programmer to
evaluate a form, often a function definition, by typing
C-M-x (cider-eval-defun-at-point). CIDER can also
instrument a form for debugging when you add a prefix to the
evaluation command: C-u C-M-x. During the instrumentation
process, CIDER will insert as many breakpoints as possible into the
form. Whenever execution reaches a breakpoint, CIDER will drop into
debugging mode and will prompt you for what to do next. You can remove
the instrumentation by evaluating the form again normally, using
C-M-x.

You can also trigger insert a breakpoint manually into any code
manually by placing #break in front of the form where you want the
breakpoint to trigger and then evaluating the form with
C-M-x. When execution reaches the form after the #break,
you’ll be dropped into the debugger.

For instance, if you hit C-M-x on the following, a
breakpoint is triggered every time (inspector msg) is evaluated.

(defn eval-msg [{:keys [inspect] :as msg}]
 (if inspect
 #break (inspector msg)
 msg))

Instead of #break, you can also write #dbg before a form. This
will place a breakpoint both in front of the form, as with #break,
and also everything inside it. In the example above, this places one
breakpoint around (inspector msg) and another around msg. In fact,
typing C-u C-M-x to instrument a top-level form is just a
convenient way to evaluate the form with an implicit #dbg in front
of it; the behavior is the same.

At any point, you can bring up a list of all currently instrumented defs with
the command M-x cider-browse-instrumented-defs. Protocols and types
can be instrumented as well, but they will not be listed by this
command.

Understanding Breakpoints

In the CIDER debugger, the term “breakpoint” refers to a place where
the debugger can halt execution and display the value of an
expression. You can set a single breakpoint with #break, or set
breakpoints throughout a form with #dbg (or by evaluating with C-u
C-M-x), as described previously.

When using #dbg or C-u C-M-x, not every form is wrapped
in a breakpoint. The debugger tries to avoid setting breakpoints on
expressions that are not interesting. For example, there is little
point in stopping execution at a literal number 23 in your code and
showing you that its value is 23 - you already know that.

Keys

Once you drop into the CIDER debugger, you have a number of commands
available to you to step through your code, evaluate other forms,
inspect values, inject new values, or view the current
stack. cider-debug tries to be consistent with Edebug [http://www.gnu.org/software/emacs/manual/html_node/elisp/Edebug.html] command
keys, although there are some differences.

Keyboard shortcut | Description
——————————–|——————————-
n | Next step
i | Step in to a function
o | Step out of the current sexp (like up-list)
O | Force-step out of the current sexp
h | Skip all sexps up to “here” (current position). Move the cursor before doing this.
H | Force-step to “here”
c | Continue without stopping
e | Eval code in current context
p | Inspect a value
l | Inspect local variables
j | Inject a value into running code
s | Show the current stack
t | Trace. Continue, printing expressions and their values.
q | Quit execution

Additionally, all the usual evaluation commands such as C-x
C-e or C-c M-: will be scoped to the current lexical
context while the debugger is active, allowing you to access local
variables.

Stepping Command Details

These commands continue execution until reaching a breakpoint.

	next: Steps to the next breakpoint

	in: Steps in to the function about to be called. If the next breakpoint is
not around a function call, does the same as next. Note that not all
functions can be stepped in to - only normal functions stored in vars, for
which CIDER can find the source. You cannot currently step in to multimethods,
protocol functions, or functions in clojure.core (although multimethods and
protocols can be instrumented manually).

	out: Steps to the next breakpoint that is outside of the current sexp.

	Out: Same as o, but skips breakpoints in other functions. That is, if
the code being skipped over contains a call to another instrumented function,
the debugger will stop in that function if you step out with o, but not if
you step out with O.

	here: Place the point somewhere further on in the function being debugged,
at the point where you want to stop next. Then press h, and the debugger
will skip all breakpoints up until that spot.

	Here: Same as h, but skips breakpoints in other functions, as with O.

	continue: Continues without stopping, skipping all breakpoints.

Other Command Details

	eval: Prompts for a clojure expression, which can reference local
variables that are in scope where the debugger is stopped. Displays the result
in an overlay.

	inspect: Like eval, but displays the value in a cider-inspector buffer.

	locals: Opens a cider-inspector buffer displaying all local variables
defined in the context where the debugger is stopped.

	inject: Replaces the currently-displayed value with the value of an
expression that you type in. Subsequent code will see the new value that you
entered.

	stacktrace: Shows the stacktrace of the point where the debugger is
stopped.

	trace: Continues execution, but at each breakpoint, instead of stopping
and displaying the value in an overlay, prints the form and its value to the
REPL.

	quit: Quits execution immediately. Unlike with continue, the rest of the
code in the debugged function is not executed.

Conditional Breakpoints

Breakpoints can be conditional, such that the debugger will only stop when the
condition is true.

Conditions are specified using :break/when metadata attached to a form.

(dotimes [i 10]
 #dbg ^{:break/when (= i 7)}
 (prn i))

Evaluating the above with C-M-x, the debugger will stop only once, when i
equals 7.

You can also have CIDER insert the break condition into your code for
you. Place the point where you want the condition to go and evaluate
with C-u C-u C-M-x or C-u C-u C-c C-c. CIDER will then prompt you
for the condition in the minibuffer and insert the appropriate #dbg
plus metadata annotation in your code. Note that you’ll have to delete
this annotation by hand; you cannot simply use C-M-x as you
can to un-instrument C-u C-M-x.

Debugger Internals

!!! Note

This section explains a bit of the inner workings of the debugger. It is
intended to help those who are interested in contributing, and doesn't
teach anything about the debugger's usage.

CIDER works in several steps as it instruments your code:

	First, CIDER walks through the code, adding metadata to forms and symbols
that identify their position (coordinate) in the code.

	Then, it macroexpands everything to get rid of macros.

	Then, it walks through the code again, instrumenting it.

	CIDER understands all existing special forms and takes care not
to instrument where it’s not supposed to. For instance, CIDER
does not instrument the arglist of fn* or the left-side of a
let-binding.

	Wherever it finds the previously-injected metadata, assuming
that location is valid for instrumentation, it wraps the
form or symbol in a macro called breakpoint-if-interesting.

	When the resulting code actually gets compiled, the Clojure
compiler will expand the breakpoint-if-interesting macros. This
macro decides whether the return value of the form or symbol is
actually something the user might want to see. If it is, the
form or symbol gets wrapped in a breakpoint macro, otherwise it’s
returned as is.

	The breakpoint macro takes the coordinate information that was
provided in step 1. and sends it over to Emacs (the
front-end). It also sends the return value of the form and a prompt
of available commands. Emacs then uses this information to show the
value of actual code forms and prompt for the next action.

A few example forms that don’t have interesting return values (and so are not
wrapped in a breakpoint):

	In (fn [x] (inc x)) the return value is a function object and carries no
information. Note that this is not the same as the return value when you
call this function (which is interesting). Also, even those this form
is not wrapped in a breakpoint, the forms inside it are ((inc x) and
x).

	Similarly, in a form like (map inc (range 10)), the symbol inc
points to a function in clojure.core. That’s also irrelevant
(unless it’s being shadowed by a local, but the debugger can
identify that).

Frequently Asked Questions

What does CIDER stand for?

CIDER stands for Clojure Interactive Development Environment that Rocks.

Does it really rock?

Yes.

What are CIDER’s installation prerequisites?

CIDER officially supports Emacs 25.1+, Java 8+ and Clojure(Script) 1.8+.

!!! note

CIDER 0.17 was the final release which supported Java 7 and Clojure(Script) 1.7.

What’s the relationship between CIDER and nrepl.el?

nrepl.el was renamed to CIDER in version 0.3 to avoid confusion with the nREPL
server itself and to better reflect the fact that CIDER is way more than an
nREPL client for Emacs. Additionally, the new name presents us with the
opportunity to support alternative evaluation backends (e.g. the socket REPL
introduced in Clojure 1.8) down the road.

What’s the relationship between CIDER and monroe?

monroe [https://github.com/sanel/monroe] is basically a fork of an old CIDER
version before the time we started relying on nREPL middleware.

What’s the relationship between CIDER and inf-clojure?

There’s pretty much no relationship. inf-clojure [https://github.com/clojure-emacs/inf-clojure] provides a REPL based on the
comint Emacs package - you’re basically running an external REPL process
inside of Emacs (there’s no network connectivity involved). The advantage of
this is that you have no external dependencies what-so-ever - you just need some
command to start a REPL process for you.

Isn’t IntelliJ’s Cursive the best Clojure IDE?

Cursive is pretty awesome! Depending on your programming preferences (using an IDE vs
building a custom editing experience tailored to your needs) it might be a better
option for you than CIDER.

What’s the deal with the CIDER release codenames?

The codenames are usually some of the favourite places of CIDER’s head
maintainer (Bozhidar).

!!! Tip

Bozhidar really loves Spain and the West Coast of the US, so he tends
to name really special releases with codenames related to them (e.g.
Seattle, California, Andalucia, etc).

Is using CIDER a good idea if I’m new to both Emacs and Clojure?

There’s nothing particularly complex in CIDER itself, but getting to
grips with Emacs might be a bit challenging for some people.

Generally you can simplify the initial learning experience a lot by using some
Emacs “starter kit” and picking up a good book on Emacs
(e.g. Mastering Emacs [https://www.masteringemacs.org/]).

Prelude [https://github.com/bbatsov/prelude]
and Spacemacs [http://spacemacs.org/] are some great Emacs distributions that
you might consider using.

Prelude is maintained by the primary CIDER author himself, while
Spacemacs is an excellent option for vim refugees (as it places a heavy emphasis
on vim emulation via evil-mode).

Do stable CIDER releases follow some predefined cadence?

No. Stable releases are issued when the maintainers feel a new release is
warranted. The maintainers generally aim to deliver at least 2-3 stable releases
per year.

When is CIDER 1.0 going to be released?

There’s no exact roadmap for the 1.0 release. Roughly speaking the idea is to
release 1.0 once our ClojureScript support is as good as the Clojure support and
when the most important refactoring functionality from our sibling
project clj-refactor [https://github.com/clojure-emacs/clj-refactor.el] lands
into CIDER.

!!! Note

While there's no exact roadmap for the 1.0 release, we do have *a*
[roadmap](https://github.com/clojure-emacs/cider/blob/master/ROADMAP.md).

Is it true that stable CIDER releases often happen around major Clojure conferences?

Yep. We want to give people a reason to talk about CIDER at such events. :-)

!!! Tip

Inviting Bozhidar or any other core CIDER developers to present at Clojure
conferences is likely going to results in more CIDER releases,
so you should totally do this!

How unstable is the MELPA build of CIDER?

It’s pretty stable. Serious regression are introduced rather rarely and are
usually fixed within a few hours. Using the MELPA build gives you early access to
new features and you’re also helping the maintainers with the testing process.

Will CIDER eventually support the Clojure 1.8 socket REPL?

Hopefully yes. Adding support for the socket REPL is definitely on our radar, but
unfortunately it will require both significant changes to CIDER and the development
of some alternative to essential nREPL functionality (like multiple evaluation sessions)
for the socket REPL.

Will CIDER ever drop support for nREPL?

That’s extremely unlikely. Even if we eventually add support for the new socket REPL,
we’ll continue supporting nREPL as well.

!!! Note

Recently nREPL was migrated out of `clojure-contrib` and its development
has once again picked up. Check out nREPL's new home [here](https://github.com/nrepl/nREPL).

Is CIDER’s nREPL middleware Emacs specific?

Not at all. The functionality in cider-nrepl is pretty editor-agnostic and is
utilized by various editor plugins. Some prominent examples would be
vim-fireplace and Visual Studio Code’s calva.

How can I see all the configuration options available in CIDER?

M-x customize-group RET cider RET.

Are there any interesting CIDER add-ons worth checking out?

Sure! See additional packages for details.

Where can I get help regarding CIDER?

See the Support section of the manual.

What should I do if I run into some issues with CIDER?

Don’t panic! Next step - visit the Troubleshooting section of
the manual.

How can I help the project?

There are many ways in which you can help CIDER

	Donate funds

	Work on improving the documentation

	Solve open issues

	File bug reports and suggestions for improvements

	Promote CIDER via blog posts or at meetups and conferences

	Invite members of the CIDER team to speak about CIDER at meetups and conferences

Hacking on CIDER

This section explains the process of working with CIDER’s codebase (e.g. to fix
a bug or implement some new feature). It outlines the recommended workflows when
working on the Emacs Lisp side (CIDER) and the Clojure side (cider-nrepl).

Hacking on CIDER (Elisp)

Obtaining the source code

People typically install CIDER via package.el. While this gives you access the
source code (as it’s part of the package), it’s always a much better idea to
simply clone the code from GitHub and use it. In general - avoid editing the
code of an installed package.

Alternatively you can simply load CIDER in your Emacs straight from its source
repo (you’ll have to manually install all the packages CIDER depends on
in advance).

Additionally you will have to generate and require the
autoloads [https://www.gnu.org/software/emacs/manual/html_node/elisp/Autoload.html],
otherwise you’ll keep getting errors about missing commands. That’s done
automatically when installing via package.el but you’ll have to do it
manually in this case:

make autoloads # generates cider-autoloads.el

Then:

;; load CIDER from its source code
(add-to-list 'load-path "~/projects/cider")
(load "cider-autoloads" t t)

If you want to compile and generate autoloads, just run make.

Changing the code

It’s perfectly fine to load CIDER from package.el and then to start making
experiments by changing existing code and adding new code.

A very good workflow is to just open the source code you’ve cloned and start
evaluating the code you’ve altered/added with commands like C-M-x,
eval-buffer and so on.

Once you’ve evaluated the new code, you can invoke some interactive command that
uses it internally or open a Emacs Lisp REPL and experiment with it there. You
can open an Emacs Lisp REPL with M-x ielm.

You can also quickly evaluate some Emacs Lisp code in the minibuffer with M-:.

Testing the code

The code you’ve wrote should ideally be covered by specs. We use
the buttercup [https://github.com/jorgenschaefer/emacs-buttercup] library for
CIDER’s specs. If you’re familiar with Jasmine or RSpec you’ll feel right at
home.

You can run the specs you authored/changed straight from Emacs. Consult
the
buttercup documentation [https://github.com/jorgenschaefer/emacs-buttercup/blob/master/docs/running-tests] for
all the details.

Running the tests in batch mode

If you prefer running all tests outside Emacs that’s also an option.

Install cask [https://github.com/cask/cask] if you haven’t
already, then:

$ cd /path/to/cider
$ cask

Run all tests with:

$ make test

(Note: tests may not run correctly inside Emacs’ shell-mode buffers. Running
them in a terminal is recommended.)

You can also check for compliance with a variety of coding standards in batch mode (including docstrings and byte-compilation warnings):

$ make lint

Running the tests in Travis CI

If you prefer to see the full Travis CI test suite run successfully, the easiest
way to achieve that is to create your own personal account on
https://travis-ci.org. View your profile details on the Travis CI site, and
toggle the switch to enable builds on your fork of the cider project.

Subsequent pushes to your fork will generate a Travis CI build you can monitor
for success or failure.

Simulating the Travis CI tests locally in Docker

If you prefer not to wait for Travis CI all the time, or if you need to debug
something that fails in Travis CI but does not fail for you on your own machine,
then you can also run the Travis CI tests manually in Docker.

You will need to run some scripts to build and launch the Docker image.

To build:

$ docker/build.sh

The build script uses a base image provided by the engineers at Travis CI.

Note: The Travis docker image is currently more than 8GB, so be prepared with a
good internet connection and time to spare.

The resulting docker image is tagged simply cider-travis. You can run this
image by hand, but there is a convenience script available:

$ docker/run.sh

This script launches a docker container and bind-mounts your cider project
directory as /home/travis/cider such that you can instantly see any code
changes reflected inside the docker environment.

For instance, first you can run tests on Emacs 25.3:

(emacs-25.3-travis) ~/cider$ make test

And then switch to Emacs 26.1 and test again:

(emacs-25.3-travis) ~/cider$ evm use Emacs-26-pretest-travis
(emacs-26.1-travis) ~/cider$ cask install
(emacs-26.1-travis) ~/cider$ make test

You can test byte compilation too

(emacs-26.1-travis) ~/cider$ make test-bytecomp

When you are done working in docker, just exit the bash prompt, and the docker
container will also exit. Note that docker/run.sh runs the container with
--rm, meaning any changes to the docker container are discarded when the
container exits.

So for example, by default, the docker image pre-installs only the most recent
releases of Emacs 25, Emacs 26, and a recent snapshot of the Emacs git
repository. The evm tool is available should you need to install some other
specific build. However additional versions of Emacs will be discarded when
you exit the docker container.

Hacking on cider-nrepl (Clojure)

Obtaining the code

Just clone it from GitHub.

Changing the code

Just do cider-jack-in within the cider-nrepl project and start hacking as
you would on any other Clojure project. The only thing to keep in mind is that
you’ll have to restart CIDER when you add new middleware.

The jacked-in project’s definitions will take precedence over the once you have
from a binary cider-nrepl installation. This means it’s pretty easy to get
immediate feedback for the changes you’ve made.

Testing the code

The code you’ve wrote should ideally be covered by test. We use the
clojure.test library for cider-nrepl’s tests.

You can run the tests you authored/changed straight from Emacs. Consult the
CIDER documentation for all the details.

Running the tests in batch mode

You can also run the tests in an external shell. Running lein test won’t run
pretty much anything, though. (perhaps we should change this?) To run the
Clojure and ClojureScript tests you should specify some profile like this:

$ lein with-profile +1.8,+test-clj test
$ lein with-profile +1.8,+test-cljs test

This will run all Clojure and ClojureScript tests against version 1.8 of both
languages.

Indentation Specification

Overview

An indent spec can be used to specify intricate indentation rules for the more
complex macros (or functions). It is provided as a value in the var metadata,
under the :style/indent key.

(defmacro with-in-str
 "[DOCSTRING]"
 {:style/indent 1}
 [s & body]
 ...cut for brevity...)

It can take one of 3 forms:

	Absent, meaning “indent like a regular function call”.

	An integer or a keyword x, which is shorthand for the list [x].

	A list, meaning that this function/macro takes a number of special arguments,
and then all other arguments are non-special.

	The first element describes how the arguments are indented relative to the sexp. It can be:

	An integer n, which indicates this function/macro takes n special
arguments (see below for the meaning of this).

	The keyword :form, meaning “every arg indents like a function form”.

	The keyword :defn, which means “every arg not on the first line is non-special”.

	Each following element is an indent spec on its own, and it details the
internal structure of the argument on the same position as this element. So,
when that argument is a form, this element specifies how to indent that form
internally (if it’s not a form the spec is irrelevant).

	If the function/macro has more arguments than the list has elements, the last
element of the list applies to all remaining arguments.

Examples

Here we go into several examples using some well-known macros and forms from
clojure.core. Obviously these are already known by clojure-mode, so you
don’t need to specify them. They are just examples to guide you when writing
indent specs for your own macros, or for macros from third party libs.

One very simple example is the do form. All of its arguments get the same
indentation, and none of them are special. So its indent spec is simply [0],
or 0 for short.

(do
 (something)
 (quick))

(do (whatever)
 (you)
 (want))

Sticking to simplicity, the when-let* macro has one special argument (the
binding vector) and there’s no out-of-the-ordinary internal structure
involved. So the indent spec is just 1 (which is shorthand for [1]).

Let’s see something more sophisticated. If the defrecord indent spec used by
clojure-mode is [2 :form :form [1]]. This is saying:

	defrecord has 2 special arguments (the name and the arglist).

	The first two arguments have no special internal structure.

	All remaining arguments have an internal indent spec of [1] (which means
only the arglist is indented specially and the rest is the body).

(defrecord Thing [a]
 FileNameMap
 (getContentTypeFor [_ file-name]
 (str a "-" file-name))
 Object
 (toString [_]
 "My very own thing!!"))

For something even more complicated: letfn is [1 [[:defn]] :form]. This means

	letfn has one special argument (the bindings list).

	The first arg has an indent spec of [[:defn]], which means all forms
inside the first arg have an indent spec of [:defn].

	The second argument, and all other arguments, are regular forms.

(letfn [(twice [x]
 (* x 2))
 (six-times [y]
 (* (twice y) 3))]
 (six-times 15))

Special Arguments

Many macros have a number of “special” arguments, followed by an arbitrary
number of “non-special” arguments (sometimes called the body). The “non-special”
arguments have a small indentation (usually 2 spaces). The special arguments
are usually on the same line as the macro name, but, when necessary, they are
placed on a separate line with additional indentation.

For instance, defrecord has two special arguments, and here’s how it might be indented:

(defrecord TheNameOfTheRecord
 [a pretty long argument list]
 SomeType
 (assoc [_ x]
 (.assoc pretty x 10)))

Here’s another way one could do it:

(defrecord TheNameOfTheRecord
 [a pretty long argument list]
 SomeType
 (assoc [_ x]
 (.assoc pretty x 10)))

The point of the indent spec is not to specify how many spaces to use.

The point is just to say “a defrecord has 2 special arguments”, and then let
the editor and the user come to an agreement on how many spaces they like to use
for special and non-special arguments.

Internal indentation

The issue goes a bit deeper. Note the last argument in that defrecord. A
regular function form would be internally indented as:

(assoc [_ x]
 (.assoc pretty x 10))

But this is not a regular function call, it’s a definition. So we want to
specify that this form internally has 1 special argument (the arglist vector),
so that it will be indented like this:

(assoc [_ x]
 (.assoc pretty x 10))

The indent spec does this as well. It lets you specify that, for each argument
beyond the 2nd, if it is a form, it should be internally indented as having 1
special argument.

Installation

The canonical way to install CIDER is via package.el (Emacs’s built-in package
manager), but it can be installed manually or via alternative package managers such
as el-get.

Prerequisites

You’ll need to have Emacs installed, preferably the latest stable
release. If you’re new to Emacs you might want to go through
the guided tour of Emacs [https://www.gnu.org/software/emacs/tour/index.html]
and the built-in tutorial (just press C-h t).

CIDER officially supports Emacs 25.1+, Java 8+ and Clojure(Script)
1.8+. CIDER 0.17 (Andalucía) was the final release which supported
Java 7 and Clojure(Script) 1.7.

You’ll also need a recent version of either the Clojure CLI tools or your
favorite build tool (Leiningen, Boot, or Gradle) to be able to start CIDER via
cider-jack-in. Generally it’s a good idea to use the latest stable versions.

!!! warning

CIDER does not support ClojureCLR.

Installation via package.el

CIDER is available on the two major package.el community
maintained repos -
MELPA Stable [http://stable.melpa.org]
and MELPA [http://melpa.org].

You can install CIDER with the following command:

M-x package-install [RET] cider [RET]

or by adding this bit of Emacs Lisp code to your Emacs initialization file
(.emacs or init.el):

(unless (package-installed-p 'cider)
 (package-install 'cider))

If the installation doesn’t work try refreshing the package list:

M-x package-refresh-contents [RET]

It’s important to note that MELPA packages are built automatically
from the master branch, and that means you’ll be right on the
leading edge of development. This has upsides and downsides; you’ll
see new features first, but you might experience some bugs from
time to time. Nevertheless, installing from MELPA is a reasonable way
to obtain CIDER. The master branch is normally quite stable
and serious regressions there are usually fixed quickly.

If you have concerns about living on the leading edge of CIDER
deveopment, you can always pin CIDER to use MELPA Stable like this:

(add-to-list 'package-pinned-packages '(cider . "melpa-stable") t)

!!! Tip

If you don't want to (or can't) wait for MELPA to rebuild CIDER,
you can easily build and install an up-to-date MELPA package locally yourself. Check out
[this article](http://emacsredux.com/blog/2015/05/10/building-melpa-packages-locally/)
for details on the subject.

!!! note

CIDER has dependencies (e.g. `queue` & `seq`) that are only available in the
[GNU ELPA repository](https://elpa.gnu.org/). It's the only package repository
enabled by default in Emacs and you should not disable it!

Installation via use-package

use-package can be used to install CIDER via the package.el’s repositories
MELPA Stable [http://stable.melpa.org] and MELPA [http://melpa.org].

If you wanted to install the version of CIDER which is what is to be found in
the master branch, declare the following in your Emacs initialization file
(.emacs or init.el):

(use-package cider
 :ensure t)

However, if you wanted to be a bit more conservative and only use the stable
releases of CIDER, you’d declare the following:

(use-package cider
 :ensure t
 :pin melpa-stable)

After placing one of the above s-expressions, evaluate it, for it to take effect
by entering: C-x C-e.

For further configuration options with use-package, consult the
official use-package repository [https://github.com/jwiegley/use-package].

Installation via el-get

CIDER is also available for installation from
the el-get [https://github.com/dimitri/el-get] package manager.

Provided you’ve already installed el-get you can install CIDER with the
following command:

M-x el-get-install [RET] cider [RET]

Manual Installation

Installing CIDER manually is discouraged unless you plan to work with CIDER’s
codebase. The manual installation is relatively involved as it requires manual
installation of the dependencies. Check out the section
Hacking on CIDER for more details.

CIDER’s nREPL Middleware

Much of CIDER’s functionality depends on its own nREPL
middleware [https://github.com/clojure-emacs/cider-nrepl]. Starting
with version 0.11, cider-jack-in (C-c C-x (C-)j (C-)j)
automatically injects this middle and other dependencies as required.

!!! Note
In the past, if you were setting up CIDER, you might have had to
modify profiles.clj or profile.boot. CIDER now handles
everything automatically and you don’t need to add anything
special to these files.

!!! Tip

If you don't want `cider-jack-in` to inject dependencies automatically, set
`cider-inject-dependencies-at-jack-in` to `nil`. Note that you'll have to setup
the dependencies yourself (see the section below), just as in CIDER 0.10 and older.

CIDER can also inject a Clojure dependency into your project, which is useful,
for example, if your project defaults to an older version of Clojure than that
supported by the CIDER middleware. Set cider-jack-in-auto-inject-clojure
appropriately to enable this.

If you prefer a standalone REPL, you will need to invoke
cider-connect instead of cider-jack-in and manually add the
dependencies to your Clojure project (explained in the following
section).

Setting Up a Standalone REPL

Using Leiningen

!!! Note

It's highly recommended to use Leiningen 2.8.3 or newer, as 2.8.3 is the first
release to ship with nREPL 0.5.

Use the convenient plugin for defaults, either in your project’s
project.clj file or in the :repl profile in ~/.lein/profiles.clj.

:plugins [[cider/cider-nrepl "x.y.z"]]

A minimal profiles.clj for CIDER would be:

{:repl {:plugins [[cider/cider-nrepl "0.21.1"]]}}

!!! warning

Be careful not to place this in the `:user` profile, as this way CIDER's
middleware will always get loaded, causing `lein` to start slower. You really
need it just for `lein repl` and this is what the `:repl` profile is for.

Using Boot

!!! Note

It's highly recommended to use Boot 2.8.2 or newer, as 2.8.2 is the first
release to ship with nREPL 0.4.

Boot users can configure the tool to include the middleware automatically in
all of their projects using a ~/.boot/profile.boot file like so:

(require 'boot.repl)

(swap! boot.repl/*default-dependencies*
 concat '[[cider/cider-nrepl "0.21.1"]])

(swap! boot.repl/*default-middleware*
 conj 'cider.nrepl/cider-middleware)

For more information visit boot-clj wiki [https://github.com/boot-clj/boot/wiki/Cider-REPL].

Using Embedded nREPL Server

If you’re embedding nREPL in your application, you’ll have to start the
server with CIDER’s own nREPL handler.

(ns my-app
 (:require [nrepl.server :as nrepl-server]
 [cider.nrepl :refer (cider-nrepl-handler)]))

(defn -main
 []
 (nrepl-server/start-server :port 7888 :handler cider-nrepl-handler))

It goes without saying that your project should depend on cider-nrepl.

!!! note

Prior to CIDER 0.18, CIDER and cider-nrepl were always released together
and their versions had to match for things to work. But as the prominence
of cider-nrepl grew and many other tools started using it, the two
projects evolved separately and are no longer in tight
lock-step. Any recent version of cider-nrepl should be compatible
with a recent version of CIDER. You can check the required version
of cider-nrepl for your version of CIDER by looking at
`cider-required-middleware-version`.

Interactive Programming

Overview

Traditional programming languages and development environments often
use a Edit, Compile, Run
Cycle [http://wiki.c2.com/?EditCompileLinkRun]. In this environment,
the programmer modifies the code, compiles it, and then runs it to see
if it does what she wants. The program is then terminated, and the
programmer goes back to editing the program further. This cycle is
repeated over and over until the program behavior conforms to what the
programmer desires. While modern IDEs have optimized this process to
be quick and relatively painless, it’s still a slow way to work.

Clojure and CIDER offer a better way to work called interactive
programming. Indeed, this idea is at the very heart of CIDER.

Using CIDER’s interactive programming environment, a programmer works
in a very dynamic and incremental manner. Instead of repeatedly
editing, compiling, and restarting an application, the programmer
starts the application once and then adds and updates individual
Clojure defintions as the program continues to run. Using the CIDER
REPL, the programmer can access the value of different definitions and
invoke program functions with test data, immediately seeing the
result. This methodology is far more efficient than the typical Edit,
Compile, and Run Cycle because the program continues to run and keeps
its state intact while the programmer interacts with it. Indeed, some
Clojure programmers have been known to keep a CIDER session running
for weeks or even months as they continue to write code.

CIDER’s interactive programming environment is partially implemented
using an Emacs minor mode called cider-mode. cider-mode
complements clojure-mode and allows you to evaluate Clojure code
from your source file buffers and send it directly to your running
program through the CIDER REPL. Using the functions offered by
cider-mode will improve your productivity and make you a more
efficient Clojure programmer.

Using cider-mode

Here’s a list of cider-mode’s keybindings:

Command | Keyboard shortcut | Description
———————————————-|————————————-|——————————-
cider-eval-last-sexp |C-x C-e
 C-c C-e| Evaluate the form preceding point and display the result in the echo area and/or in an buffer overlay (according to cider-use-overlays). If invoked with a prefix argument, insert the result into the current buffer.
cider-eval-last-sexp-and-replace |C-c C-v w | Evaluate the form preceding point and replace it with its result.
cider-eval-last-sexp-to-repl |C-c M-e | Evaluate the form preceding point and output it result to the REPL buffer. If invoked with a prefix argument, takes you to the REPL buffer after being invoked.
cider-insert-last-sexp-in-repl |C-c M-p | Load the form preceding point in the REPL buffer.
cider-pprint-eval-last-sexp |C-c C-v C-f e | Evaluate the form preceding point and pretty-print the result in a popup buffer. If invoked with a prefix argument, insert the result into the current buffer as a comment.
cider-pprint-eval-defun-at-point |C-c C-v C-f d | Evaluate the top level form under point and pretty-print the result in a popup buffer. If invoked with a prefix argument, insert the result into the current buffer as a comment.
cider-eval-defun-at-point |C-M-x
 C-c C-c | Evaluate the top level form under point and display the result in the echo area.
cider-eval-sexp-at-point |C-c C-v v | Evaluate the form around point.
cider-eval-defun-at-point |C-u C-M-x
 C-u C-c C-c | Debug the top level form under point and walk through its evaluation
cider-eval-defun-up-to-point |C-c C-v z | Evaluate the preceding top-level form up to the point.
cider-eval-region |C-c C-v r | Evaluate the region and display the result in the echo area.
cider-interrupt |C-c C-b | Interrupt any pending evaluations.
cider-macroexpand-1 |C-c C-m | Invoke macroexpand-1 on the form at point and display the result in a macroexpansion buffer. If invoked with a prefix argument, macroexpand is used instead of macroexpand-1.
cider-macroexpand-all |C-c M-m | Invoke clojure.walk/macroexpand-all on the form at point and display the result in a macroexpansion buffer.
cider-eval-ns-form |C-c C-v n | Eval the ns form.
cider-repl-set-ns |C-c M-n (M-)n | Switch the namespace of the REPL buffer to the namespace of the current buffer.
cider-switch-to-repl-buffer |C-c C-z | Switch to the relevant REPL buffer. Use a prefix argument to change the namespace of the REPL buffer to match the currently visited source file.
cider-switch-to-repl-buffer |C-u C-u C-c C-z | Switch to the REPL buffer based on a user prompt for a directory.
cider-load-buffer-and-switch-to-repl-buffer |C-c M-z | Load (eval) the current buffer and switch to the relevant REPL buffer. Use a prefix argument to change the namespace of the REPL buffer to match the currently visited source file.
cider-describe-connection |C-c M-d | Display default REPL connection details, including project directory name, buffer namespace, host and port.
cider-find-and-clear-repl-output |C-c C-o | Clear the last output in the REPL buffer. With a prefix argument it will clear the entire REPL buffer, leaving only a prompt. Useful if you’re running the REPL buffer in a side by side buffer.
cider-load-buffer |C-c C-k | Load (eval) the current buffer.
cider-load-file |C-c C-l | Load (eval) a Clojure file.
cider-load-all-files |C-c C-M-l | Load (eval) all Clojure files below a directory.
cider-ns-refresh |C-c M-n (M-)r | Reload all modified files on the classpath. If invoked with a prefix argument, reload all files on the classpath. If invoked with a double prefix argument, clear the state of the namespace tracker before reloading.
cider-doc |C-c C-d d
 C-c C-d C-d | Display doc string for the symbol at point. If invoked with a prefix argument, or no symbol is found at point, prompt for a symbol.
cider-javadoc |C-c C-d j
 C-c C-d C-j | Display JavaDoc (in your default browser) for the symbol at point. If invoked with a prefix argument, or no symbol is found at point, prompt for a symbol.
cider-grimoire |C-c C-d r
 C-c C-d C-r | Lookup symbol in Grimoire.
cider-grimoire-web |C-c C-d w
 C-c C-d C-w | Open the grimoire documentation for symbol in a web browser.
cider-apropos |C-c C-d a
 C-c C-d C-a | Apropos search for functions/vars.
cider-apropos-documentation |C-c C-d f
 C-c C-d C-f | Apropos search for documentation.
cider-apropos-documentation-select |C-c C-d e
 C-c C-d C-e | Apropos search for documentation & select.
cider-inspect |C-c M-i | Inspect expression. Will act on expression at point if present.
cider-toggle-trace-var |C-c M-t v | Toggle var tracing.
cider-toggle-trace-ns |C-c M-t n | Toggle namespace tracing.
cider-undef |C-c C-u | Undefine a symbol. If invoked with a prefix argument, or no symbol is found at point, prompt for a symbol.
cider-test-run-test |C-c C-t t
 C-c C-t C-t | Run test at point.
cider-test-rerun-test |C-c C-t g
 C-c C-t C-g | Re-run the last test you ran.
cider-test-run-ns-tests |C-c C-t n
 C-c C-t C-n | Run tests for current namespace.
cider-test-run-loaded-tests |C-c C-t l
 C-c C-t C-l | Run tests for all loaded namespaces.
cider-test-run-project-tests |C-c C-t p
 C-c C-t C-p | Run tests for all project namespaces. This loads the additional namespaces.
cider-test-rerun-failed-tests |C-c C-t r
 C-c C-t C-r | Re-run test failures/errors.
cider-test-show-report |C-c C-t b
 C-c C-t C-b | Show the test report buffer.
cider-find-var |M-. | Jump to the definition of a symbol. If invoked with a prefix argument, or no symbol is found at point, prompt for a symbol.
cider-find-dwim-at-mouse |mouse-5 or mouse-9 | Jump to the definition of a symbol using mouse.
xref-pop-marker-stack |mouse-4 or mouse-8 | Jump back to where cider-find-dwim-at-mouse was invoked.
cider-find-resource |C-c M-. | Jump to the resource referenced by the string at point.
cider-find-ns |C-c C-. | Jump to some namespace on the classpath.
cider-pop-back |M-, | Return to your pre-jump location.
complete-symbol |M-TAB | Complete the symbol at point.
cider-quit |C-c C-q | Quit the current nREPL connection.

!!! Tip

There's no need to memorize this list. If you're in a Clojure buffer with `cider-mode`
active you'll have a CIDER menu available. The menu lists all the most important
commands and their keybindings. You can also invoke `C-h f RET cider-mode` to
get a list of the keybindings for `cider-mode`.

[image: _images/menu_example.png]CIDER interactions menu

!!! Tip

An even better solution would be to install [which-key][], which will
automatically show you a list of available keybindings as you start typing some
keys. This will simplify your interactions with CIDER quite a lot,
especially in
the beginning. Here's what you'd see if you typed <kbd>C-c C-d</kbd> in a
Clojure buffer:

[image: _images/cider-which-key.png]CIDER which-key

!!! Tip

`cider-find-var` has built-in support for [AVFS][]. AVFS is an a virtual
file system which allows seamless navigation within archives as if they were
normal directories. When AVFS is mounted, `cider-find-var` automatically
opens `jar` and `zip` files inside AVFS folder instead of attempting to
uncompress the archive.

On Linux-based systems, AVFS is available through the standard
package managers. For example, on Debian derivatives:

 `sudo apt-get install avfs`

Once installed, you can put `mountavfs` in a place where it will
be invoked
automatically during the startup (`.bash_profile`, for
instance). You can also initialize the
`avfsd` daemon directly like this:

 `/usr/bin/avfsd -o allow_root -o intr -o sync_read .avfs`

[AVFS][] is not available on Windows but can be installed on MacOS with [some
effort](http://blog.breadncup.com/tag/sunrise-commander/). Some other uses of
[AVFS][] in Emacs include
[dired-avfs](https://github.com/Fuco1/dired-hacks#dired-avfs) and
[sunrise-commander](https://www.emacswiki.org/emacs/Sunrise_Commander_Tips#toc12).

Managing Connections

!!! Note

Because connections map one-to-one to REPL buffers, for the purpose of this
section we use "REPL" and "connection" interchangeably.

Sessions

CIDER maintains a grouped view of opened nREPL connections through Sesman [https://github.com/vspinu/sesman]
sessions. Each session is a collection of connections which share the same nREPL
server.

Start new sessions with

	C-c C-x j j cider-jack-in-clj

	C-c C-x j s cider-jack-in-cljs

	C-c C-x j m cider-jack-in-clj&cljs

	C-c C-x c j cider-connect-clj

	C-c C-x c s cider-connect-cljs

	C-c C-x c m cider-connect-clj&cljs

Add new REPLs to the current session with

	C-c C-x s j cider-connect-sibling-clj

	C-c C-x s s cider-connect-sibling-cljs

Session life-cycle management commands live on the Sesman [https://github.com/vspinu/sesman] map (C-c
C-s)

	C-c C-s s sesman-start

	C-c C-s r sesman-restart

	C-c C-s q sesman-quit

The command sesman-start wraps around all of the aforementioned jack-in and
connect commands. You can also invoke same functionality with M-x
cider or C-c M-x.

To quit or restart individual connections use cider commands

	C-c C-q cider-quit

	C-c M-r cider-restart

Context Links

Sessions can be linked to contexts (projects, directories and buffers)

	C-c C-s b sesman-link-with-buffer

	C-c C-s d sesman-link-with-directory

	C-c C-s p sesman-link-with-project

	C-c C-s u sesman-unlink

Friendly Sessions

Sesman [https://github.com/vspinu/sesman] defines “friendly” session to allow for on-the-fly operation on
sessions from contexts where there are no explicit links. In CIDER friendly
sessions are defined by the project dependencies. For example when you use
cider-find-var (M-.) to navigate to a var definition in a
dependency project the current project’s session becomes a friendly session for
the dependency.

When you evaluate some code from a dependency project and there are no explicit
links in that project, the most recent friendly session is used to evaluate the
code. Explicitly linked sessions have precedence over the friendly sessions.

You can disable friendly session inference by customizing
sesman-use-friendly-sessions.

Displaying Session Info

Get info on all linked and friendly sessions in the current context with
C-c C-s i (sesman-info). On C-u, display info on all
CIDER sessions. For the connection specific information use CIDER’s built-in
cider-describe-connection (C-c M-d).

An interactive view of all CIDER sessions is available through the
sesman-browser (C-c C-s w).

Current Session

All CIDER commands (evaluation, completion, switching to REPL etc.) operate on
the relevant REPL within the current session. The current session is the most
relevant session among all linked session (or friendly sessions when no links
exist). Session relevance is decided by the specificity of the linked contexts
and recency of the REPL buffers.

If the current context is linked to a single session then that session is the
current one. If multiple sessions are linked to a context (say, a project) then
the current session is the one containing the most recently viewed REPL.

Links to more specific contexts have precedence. For example, if you have two
sessions linked to the same project and another to a directory within that
project, then the session linked to the directory is the current session. Thus,
again, there is no ambiguity.

By default Sesman [https://github.com/vspinu/sesman] allows multiple simultaneous links to projects and
directories, but only one link per buffer. See sesman-single-link-contexts if
you would like to change that.

Current REPL

The current REPL is the most relevant REPL from the current session. REPL relevance
is determined by the type of the current buffer. For example if the current
buffer is a clj buffer then a clj REPL is selected. Ambiguous situations could
arise when, for instance, there are multiple clj REPLs within a session, or
the current buffer is a cljc buffer and both clj and cljs REPLs exist in
the session. In such cases the current REPL is the most recently viewed REPL of
the relevant type.

Switch to the current REPL buffer with C-c C-z. You can then use the
same key combination to switch back to the Clojure(Script) buffer that you came
from.

The single prefix C-u C-c C-z, will switch to the current REPL buffer
and set the namespace in that buffer based on namespace in the current
Clojure(Script) buffer.

Customizing Session and REPL Names

By default session names consist of abbreviated project name, host and port
(e.g. project/dir:localhost:1234). REPL buffer name consist of the session
name and the REPL type specification post-fix
(e.g. *project/dir:localhost:1234(cljs:node)*).

You can customize session names with cider-session-name-template and REPL
names with nrepl-repl-buffer-name-template. See also
cider-format-connection-params for available formats.

Miscellaneous Features

As the infomercials always say, “But wait, there’s more!” If
simultaneous Clojure and ClojureScript REPLs, interactive programming,
code completion, stacktrace navigation, test running, and debugging
weren’t enough for you, CIDER delivers several additional
features.

Evaluating Clojure Code in the Minibuffer

You can evaluate Clojure code in the minibuffer at almost any time
using M-x cider-read-and-eval (bound in cider-mode buffers to
C-c M-:). TAB completion will work in the minibuffer,
just as in REPL and source buffers.

Typing C-c C-v . in a Clojure buffer will insert the defun
at point into the minibuffer for evaluation. This way you can pass arguments
to the function and evaluate it and see the result in the minibuffer.

You can also enable other convenient modes in the minibuffer. For
instance, you might want to have both eldoc-mode and paredit-mode
available to you:

(add-hook 'eval-expression-minibuffer-setup-hook #'eldoc-mode)
(add-hook 'eval-expression-minibuffer-setup-hook #'paredit-mode)

Using a Scratchpad

CIDER provides a simple way to create a Clojure scratchpad via the
M-x cider-scratch command. This is a great way to play
around with some code without having to create source files or pollute
the REPL buffer and is very similar to Emacs’s own *scratch* buffer.

Expanding Macros

Typing C-c C-m after some form in a source buffer or the
REPL will show you the macro expansion of the form in a new
buffer. You’ll have access to additional keybindings in the macro
expansion buffer (which is internally using
cider-macroexpansion-mode):

Keyboard shortcut | Description
———————————-|——————————-
m | Invoke macroexpand-1 on the form at point and replace the original form with its expansion. If invoked with a prefix argument, macroexpand is used instead of macroexpand-1.
a | Invoke clojure.walk/macroexpand-all on the form at point and replace the original form with its expansion.
g | The prior macro expansion is performed again and the current contents of the macro expansion buffer are replaced with the new expansion.
C-/
 u | Undo the last in-place expansion performed in the macroexpansion buffer.

Inspecting Values

Typing C-c M-i after some form in a source buffer or the
REPL will show you the structure for the result of the form in a new
buffer. You can also use C-u C-c M-i to inspect the result
of the current top-level form and C-u C-u C-c M-i to read
an expression from the minibuffer and inspect its result. You’ll have
access to additional keybindings in the inspector buffer (which is
internally using cider-inspector-mode):

Keyboard shortcut | Description
—————————————-|——————————-
Tab or Shift-Tab | Navigate inspectable sub-objects
Return | Inspect sub-objects
l | Pop to the parent object
g | Refresh the inspector (e.g. if viewing an atom/ref/agent)
SPC | Jump to next page in paginated view
M-SPC | Jump to previous page in paginated view
s | Set a new page size in paginated view

Displaying Local Values with Enlighten Mode

Enlighten Mode displays the value of locals in realtime, as your code
runs. This feature is somewhat similar to a feature in the Light Table
editor.

To turn it on, issue M-x cider-enlighten-mode. Then,
evaluate your functions one at a time using C-M-x or
C-x C-e. Note that C-c C-k won’t work.

That’s it! Once your code executes, the regular old buffer on the left will turn
into the brilliant show of lights on the right.

Enlighten Mode Disabled | Enlighten Mode Enabled
——————————————-|—————————————
[image: _images/enlighten_disabled.png]Disabled | [image: _images/enlighten_enabled.png]Enabled

To stop displaying the locals you’ll have to disable cider-enlighten-mode
and reevaluate the definitions you had instrumented previously.

You can also trigger this on specific functions (without having to turn on the
minor mode) by writing #light before the (def and re-evaluating
it.

Reloading Code

While Clojure’s and CIDER’s interactive programming style means you’ll
restart your application far less often than with other languages and
development environments, sometimes you’ll want to clean everything up
and reload one or more namespaces to ensure that they are up to date
and there are no temporary definitions hanging around.

Typing C-c M-n r or C-c M-n M-r will invoke
cider-ns-refresh and reload all modified Clojure files on the
classpath.

Adding a prefix argument, C-u C-c M-n n, will reload all
the namespaces on the classpath unconditionally, regardless of their
modification status.

Adding a double prefix argument, C-u C-u M-n n, will first
clear the state of the namespace tracker before reloading. This is
useful for recovering from some classes of error that normal reloads
would otherwise not recover from. A good example is circular
dependencies. The trade-off is that stale code from any deleted files
may not be completely unloaded.

cider-ns-refresh wraps
clojure.tools.namespace [https://github.com/clojure/tools.namespace], and as
such the same
benefits [https://github.com/clojure/tools.namespace#reloading-code-motivation]
and
caveats [https://github.com/clojure/tools.namespace#reloading-code-preparing-your-application]
regarding writing reloadable code also apply.

The above three operations are analogous to
clojure.tools.namespace.repl/refresh [http://clojure.github.io/tools.namespace/#clojure.tools.namespace.repl/refresh],
clojure.tools.namespace.repl/refresh-all [http://clojure.github.io/tools.namespace/#clojure.tools.namespace.repl/refresh-all]
and
clojure.tools.namespace.repl/clear [http://clojure.github.io/tools.namespace/#clojure.tools.namespace.repl/clear]
(followed by a normal refresh), respectively.

You can define Clojure functions to be called before reloading, and after a
successful reload, when using cider-ns-refresh:

(setq cider-ns-refresh-before-fn "user/stop-system!"
 cider-ns-refresh-after-fn "user/start-system!")

These must be set to the namespace-qualified names of vars bound to
functions of no arguments. The functions must be synchronous
(blocking), and are expected to be side-effecting - they will always
be executed serially, without retries.

By default, messages regarding the status of the in-progress reload
will be displayed in the echo area after you call
cider-ns-refresh. The same information will also be recorded in the
cider-ns-refresh-log buffer, along with anything printed to
out or *err* by cider-ns-refresh-before-fn and
cider-ns-refresh-start-fn.

You can make the *cider-ns-refresh-log* buffer display automatically
after you call cider-ns-refresh by setting the
cider-ns-refresh-show-log-buffer variable to a non-nil value. This
will also prevent any related messages from also being displayed in
the echo area.

(setq cider-ns-refresh-show-log-buffer t)

By default, CIDER will prompt for whether to save all modified clojure-mode
buffers visiting files on the classpath. You can customize this behavior with
cider-ns-save-files-on-refresh and cider-ns-save-files-on-refresh-modes.

Sometimes, cider-ns-refresh may not work for you. If you’re looking
for a bit more forceful reloading the cider-ns-reload
and cider-ns-reload-all commands can be used instead. These commands
invoke Clojure’s (require ... :reload) and (require ... :reload-all) commands at the REPL.

Tracing Function Execution

You can trace the arguments supplied to and the result values produced
by functions using C-c M-t v. CIDER will prompt you for the
name of the function you want to trace, defaulting to the previous
top-level definition.

[image: _images/tracing.png]Tracing

Invoking C-c M-t v again for the same function will result
in the function being untraced.

You can also use C-c M-t n to toggle tracing on and off for
an entire namespace.

Browsing the Classpath

You can easily browse the items on your classpath with the command
M-x cider-classpath.

Here you can see it in action:

[image: _images/classpath_browser.png]Classpath Browser

Press RET on a classpath entry to navigate into it.

Browsing Namespaces

You can browse the contents of any loaded namespace with the command
M-x cider-browse-ns. CIDER will prompt you for the namespace
to browse.

[image: _images/ns_browser.png]Namespace Browser

You can also browse all available namespaces with M-x
cider-browse-ns-all.

There are a bunch of useful keybindings that are defined in browser buffers.

Keyboard shortcut | Description
——————————–|——————————-
d | Display documentation for item at point.
RET | Browse ns or display documentation for item at point.
s | Go to definition for item at point.
^ | Browse all namespaces.
n | Go to next line.
p | Go to previous line.

Browsing the Clojure Spec Registry

If you are using Clojure 1.9 or newer you can browse the Clojure spec registry.

If you already know which spec you’re looking for, you can type
M-x cider-browse-spec and CIDER will prompt you for a
spec name and then drop you into the spec browser.

[image: _images/spec_browser.png]Spec Browser

If you aren’t quite sure which spec you want, you can type
M-x cider-browse-spec-all. CIDER will then prompt you for
a regex and will filter out all the spec names that don’t match.

[image: _images/spec_browser_all.png]Spec Browser

Once in the browser you can use your mouse or the keybindings below to
navigate deeper.

Keyboard shortcut | Description
——————————–|——————————-
RET | Browse the spec at point.
^ | Go up in the navigation stack.
n | Go to next spec.
p | Go to previous spec.
e | Generate an example for the current browser spec.

If your project includes the org.clojure/test.check library, you can
type e when browsing a spec to generate an example that
meets the spec.

[image: _images/spec_browser_gen_example.png]Spec Browser Example

Generating Documentation Cross References

Sometimes in your documentation strings, you’d like to be able to
point other programmers at different definitions. If you specify the
name of a definition in backticks (`), CIDER will convert these
references into live links when it displays the documentation string
in the documentation buffer.

If the name is in another namespace, then you’ll have to include the
fully qualified name in the docstring.

Example function with a docstring containing references:

(defn test-fn
 "Test function.
 Also see: `clojure.core/map`, `clojure.core/reduce`, `defn`.
 You can reference variables like `thor`, `kubaru.data.zookeeper/yoda`.
 Also works with references to java interop forms, `java.lang.String/.length`."
 []
 (+ 1 1))

You can change the delimiters that CIDER uses to find references if
you don’t like using backticks. Simply update the regexp in
cider-doc-xref-regexp to match your preferred format. The first
group of the regexp should always match the cross-reference name. For
example, if you want to want to use
Codox’s [https://github.com/weavejester/codox] delimiter style
([[...]]) instead of backticks, the regexp would be:

(setq cider-doc-xref-regexp "\\[\\[\\(.*?\\)\\]\\]")

[image: _images/cider_see_also.gif]CIDER See Also

Navigating Stacktraces

CIDER comes with a powerful solution for dealing with Clojure
stacktraces. CIDER presents stack traces in a special major mode,
cider-stacktrace-mode, which gives you gives you some key features:

	the ability to filter out certain stack frames to reduce clutter

	some handy ways to navigate to the cause of the exception

	the ability to jump straight to code with a single keystroke

Keybindings

Command | Keyboard shortcut | Description
—————————————|————————————-|————–
cider-stacktrace-previous-cause |M-p | Move point to previous cause
cider-stacktrace-next-cause |M-n | Move point to next cause
cider-stacktrace-jump |M-. or Return | Navigate to the source location (if available) for the stacktrace frame
cider-stacktrace-cycle-current-cause |Tab | Cycle current cause detail
cider-stacktrace-cycle-all-causes |0 or S-Tab | Cycle all cause detail
cider-stacktrace-cycle-cause-1 |1 | Cycle cause #1 detail
cider-stacktrace-cycle-cause-2 |2 | Cycle cause #2 detail
cider-stacktrace-cycle-cause-3 |3 | Cycle cause #3 detail
cider-stacktrace-cycle-cause-4 |4 | Cycle cause #4 detail
cider-stacktrace-cycle-cause-5 |5 | Cycle cause #5 detail
cider-stacktrace-toggle-java |j | Toggle display of Java frames
cider-stacktrace-toggle-clj |c | Toggle display of Clojure frames
cider-stacktrace-toggle-repl |r | Toggle display of REPL frames
cider-stacktrace-toggle-tooling |t | Toggle display of tooling frames (e.g. compiler, nREPL middleware)
cider-stacktrace-toggle-duplicates |d | Toggle display of duplicate frames
cider-stacktrace-show-only-project |p | Toggle display only project frames
cider-stacktrace-toggle-all |a | Toggle display of all frames

Working with Stacktraces

By default, when an exception occurs, CIDER will display the exception
in an error buffer using cider-stacktrace-mode. You can suppress
this behavior, however:

(setq cider-show-error-buffer nil)

At times, the error being displayed will originate from a bug in CIDER
itself. These internal errors might frequently occur and interrupt
your workflow, but you might not want to suppress all stacktrace
buffers by using cider-show-error-buffer. Instead, you might only
want to suppress this specific type of internal error. The
stacktrace buffers provide such an option when displaying an internal
error. A toggle button will be displayed with the error type’s name,
and you can toggle whether this particular type of error will cause
the stacktrace buffer to automatically show itself. The toggle button
controls this behavior only during the current Emacs session, but if
you would like to make the suppression more permanent, you can do so
by customizing the cider-stacktrace-suppressed-errors variable. The
buffer will also provide a direct link to the bug reporting page to
help facilitate its diagnosis and repair.

Independently of the value of cider-show-error-buffer or
cider-stacktrace-suppressed-errors, CIDER always generates the error
buffer in the background. You can use cider-selector (C-c M-s) to
visit this buffer if you decide that you need to.

There are two more selective strategies for the error buffer:

(setq cider-show-error-buffer 'except-in-repl) ; or
(setq cider-show-error-buffer 'only-in-repl)

To disable auto-selection of the error buffer when it’s displayed:

(setq cider-auto-select-error-buffer nil)

Filtering Stack Frames

CIDER helps you cut through the clutter of Clojure stacktraces by
allowing you to apply a list of filters using the
cider-stacktrace-default-filters variable. Valid filter types
include java, clj, repl, tooling, and dup. Specifying one of
these filters will remove the corresponding frames from the stacktrace
display. There are also “positive” filtering types (reverse filters)
that specify what should be shown. The value of project, for
instance, will cause only project frames to be shown, and all will
force all stackframes to be shown. Note that project and all are
mutually exclusive. Whichever one is first will determine the behavior
if they are both present.

(setq cider-stacktrace-default-filters '(tooling dup))
;; or
(setq cider-stacktrace-default-filters '(project))

Wrapping Error Messages

Finally, CIDER can wrap error messages when they are displayed in a
buffer to help improve their readability. CIDER uses
cider-stacktrace-fill-column for this, which can take on three
types of values:

	nil: The error is not wrapped.

	numeric: The error message is wrapped to the specified fill column.

	Something truthy but non-numeric: The error message is wrapped using
the value of fill-column.

The following will cause error messages to be wrapped to 80 columns,
for instance:

(setq cider-stacktrace-fill-column 80)

Pretty-printing

Configuring a printing function

!!! Note

Pretty-printing was overhauled in CIDER 0.21 to leverage new features introduced in nREPL 0.6.
Refer to [nREPL's documentation](https://nrepl.org/nrepl/usage/misc.html#_pretty_printing) for details.

You can configure the function used by CIDER for pretty-printing evaluation
results and other data using the option cider-print-fn, which can take the
following possible values:

	nil to defer to nREPL to choose the printing function. This will use the
bound value of nrepl.middleware.print/*print-fn*, which defaults to the
equivalent of clojure.core/pr.

	pr to use the equivalent of \=clojure.core/pr\\=.

	pprint to use the built-in clojure.pprint/pprint (this is the default).

	fipp to use the Fast Idiomatic
Pretty-Printer [https://github.com/brandonbloom/fipp]. This is approximately
5-10x faster than clojure.core/pprint.

	puget to use Puget [https://github.com/greglook/puget], which provides
canonical serialization [https://github.com/greglook/puget#canonical-representation]
of data on top of fipp, but at a slight performance cost.

	zprint to use zprint [https://github.com/kkinnear/zprint], a fast and
flexible alternative to the libraries mentioned above.

Alternatively, cider-print-fn can be set to the namespace-qualified name of a
Clojure var whose function takes three arguments: the object to print, the
java.io.PrintWriter to print on, and a (possibly nil) map of options.

(setq cider-print-fn "user/my-pprint")

Here’s one example:

(ns cider.pprint
 (:require
 [clojure.pprint :as pp]))

(defn pprint
 "A simple wrapper around `clojure.pprint/write`.

 Its signature is compatible with the expectations of nREPL's wrap-print
 middleware."
 [value writer options]
 (apply pp/write value (mapcat identity (assoc options :stream writer))))

Limiting printed output

You can set cider-print-quota to limit the number of bytes that will be
returned by any printing operation. This defaults to one megabyte, and can be
set to nil if no limit is desired. Note well that if no quota is set some
printing operations may never terminate – you can still use cider-interrupt to
halt them.

Your configured printing function might also support limiting the length and
depth of printed objects – either using clojure.core/*print-length* and
clojure.core/*print-level* or in the provided options map.

Print options

You can pass an options map to the print function by setting cider-print-options. Here’s an example:

(setq cider-print-options '(dict "length" 50 "right-margin" 70))

!!! Important

Note that each print engine has its own configuration options, so you'll have to be sure to set `cider-print-options` accordingly.

Here’s a table describing the differences in the names for the most common print
options supported by every print engine.

Dynamic Var	clojure.pprint	Fipp & Puget	zprint
—————————————	——————	—————-	————–
clojure.core/*print-length*	length	print-length	max-length
clojure.core/*print-level*	level	print-level	max-depth
clojure.pprint/*print-right-margin*	right-margin	width	width

Not all printing engines use (or default to) the dynamic variables in all cases,
so setting them at the REPL may or may not have the intended effect. See the
respective documentation of each engine:

	clojure.pprint: https://clojuredocs.org/clojure.pprint/write

	Fipp: https://github.com/brandonbloom/fipp/#printer-usage

	Puget: https://github.com/greglook/puget#usage

	zprint: https://github.com/kkinnear/zprint/#what-is-configurable

Width of printed output

If you’re using one of the printing engines provided with CIDER, the value of
fill-column will be used for the relevant width option in the options
map. You can override this by hardcoding the relevant option in
cider-print-options.

Running Tests

The Clojure ecosystem provides a lot of support for test-driven
development (TDD) and other test-centric patterns. First, Clojure
provides a standardized framework for developing tests called
clojure.test [https://clojure.github.io/clojure/clojure.test-api.html]. Many other testing libraries plug into this
framework. Second, tools like Leiningen create standardized
application and library project structures that provide locations and
idiomatic naming for test code. Finally, CIDER provides several easy
ways to run these tests, view the test results, and quickly jump to
code that is failing to pass a given test.

!!! NOTE

CIDER only supports clojure.test and other libraries
providing integration with clojure.test.

Basic Usage

CIDER has several functions that help you run all your tests or a
selected subset of them. All of the CIDER test commands are available
in both source code and REPL buffers. In REPL buffers you can also use
, to invoke some of the testing commands.

First, you can run all the tests in your project with C-c C-t p
or C-c C-t C-p. It’s important to realize that this will
load all the namespaces in your project, which might be more than
you’re expecting.

You can run all loaded tests with C-c C-t l or
C-c C-t C-l.

If you invoke either of these commands with a prefix CIDER, will
prompt for test selector filters and only run those tests that match
the selector inclusions/exclusions.

Test developers use selectors to define subsets of the total test
suite that are run together for different testing tasks. For example
you can mark some of your tests with the ^:smoke metadata marker
and others with ^:integration. This enables you to run these tests
separately in your build pipeline. CIDER helps you to run these same
test subsets in your development environment.

Test selectors were originally a leiningen feature and you can get
more information by executing:

$ lein help test

You can run all the tests in the current namespace, whether specified
by a source file or by the REPL, using C-c C-t n or
C-c C-t C-n. Note that it’s idiomatic for Clojure projects
to locate tests in a separate namespace than the code that is being
tested. CIDER uses a simple algorithm to figure out where the tests
are located. The algorithm works as follows. If you’re in an
implementation namespace (e.g. some.ns), CIDER will try to find a
matching test namespace (by default some.ns-test) and run the tests
there. But if you’re in something that already looks like a test
namespace (e.g. some.ns-test), CIDER will simply run the tests in
that namespace. If you have put some of your tests into your
implementation namespace, using clojure.test/with-test, for
instance, you might want to suppress the namespace inference logic and
force CIDER to run tests in the current namespace unconditionally.
You can do this by adding a prefix to the namespace commands: C-u
C-c C-t C-n. This will simply run whatever tests are present in
the currently visited or active namespace.

You can also run a subset of the tests defined in the namespace,
filtered by test selectors, using C-c C-t C-s. CIDER will
prompt for the selectors in the minibuffer. If you call this
command with a prefix (C-u C-c C-t C-s) you can suppress
the namespace inference logic as for C-u C-c C-t C-n

Finally, you can execute the specific test at the point using
C-c C-t t or C-c C-t C-t.

Interacting with Test Result Reports

After running your tests, CIDER displays a test result report in the
cider-test-report buffer. This buffer uses cider-test-report-mode,
which makes it easy to review any failures that might have occurred
and jump directly to the definition of failing tests.

Keyboard shortcut | Description
——————————–|——————————-
g | Run test at point.
n | Run tests for current namespace.
s | Run tests for current namespace with selector filter.
l | Run tests for all loaded namespaces.
p | Run tests for all project namespaces. This loads the additional namespaces.
f | Re-run test failures/errors.
M-p | Move point to previous test.
M-n | Move point to next test.
t or M-. | Jump to test definition.
d | Display diff of actual vs expected.
e | Display test error cause and stacktrace info.

Configuration

You can configure CIDER’s test execution behavior in multiple ways.

If your tests are not following the some.ns-test naming convention
you can set the variable cider-test-infer-test-ns to a function that
takes the current namespace and returns the matching test namespace
(which may be the same as the current namespace). This provides
complete flexibility to structure your test suite using whatever
conventions you might want.

If your individual tests are not defined by deftest or defspec, CIDER will
not recognize them when searching for a test at point in cider-test-run-test.
You can customize the variable cider-test-defining-forms to add additional
forms for CIDER to recognize as individual test definitions.

If you want to view the test report regardless of whether the tests have
passed or failed:

(setq cider-test-show-report-on-success t)

Running Tests Automatically (Test-Driven Development)

CIDER provides a minor-mode that automatically runs all tests for a namespace
whenever you load a file (with C-c C-k). You can toggle it
manually with M-x cider-auto-test-mode, or you can use:

(cider-auto-test-mode 1)

This is identical to manually typing C-c C-t C-n every time
you load a Clojure buffer. As described previously, CIDER will try to
automatically determine the namespace containing the tests.

Using cider-test with Alternative Test Libraries

The clojure.test machinery is designed to be pluggable. Any test
library can integrate with it and leverage the cider-test
ecosystem.

As a test framework author, supporting the built-in clojure.test machinery
(and hence cider-test) is pretty straightforward:

	Add :test metadata to the vars corresponding to the test
functions. The clojure-test machinery uses this metadata to
find tests.

	Implement the clojure.test/report multimethod to capture the test results.

For example, test.check [https://github.com/clojure/test.check] was designed independently of clojure.test
but integrates with it. Because of this, cider-test handles
defspec just like deftest. test.check just adds compatibility in this
namespace [https://github.com/clojure/test.check/blob/24f74b83f1c7a032f98efdcc1db9d74b3a6a794d/src/main/clojure/clojure/test/check/clojure_test.cljc].

Supported Libraries

	[test-check]

	clojure-expectations [https://github.com/clojure-expectations/expectations] added
support for clojure.test in version 2.2 and should also work with CIDER.

	fudge [https://github.com/jimpil/fudje]

Troubleshooting

In case you run into issues here are a few tips that can help you diagnose the
problem.

Generally, it’s not a bad idea to configure Emacs to spit the backtrace on error
(instead of just logging the error in the *Messages* buffer). You can toggle
this behavior by using M-x toggle-debug-on-error.

Another good idea is to check the exchange of requests and responses between
CIDER and the nREPL server. You can find them in the *nrepl-messages* buffer,
provided you’ve enabled nREPL message logging.

Debugging CIDER commands

Emacs features a super powerful built-in
Emacs Lisp debugger [http://www.gnu.org/software/emacs/manual/html_node/elisp/Edebug.html]
and using it is the best way to diagnose problems of any kind.

!!! Tip

Here's a [great crash course](https://www.youtube.com/watch?v=odkYXXYOxpo) on
using the debugger.

To debug some command you need to do the following:

	Figure out the name of the command you want to debug (e.g. by using C-h k
to see which command is associated with some keybinding)

	Find the source of the command (e.g. by using M-x find-function
RET function-name)

	Press C-u C-M-x while in the body of the function

	Run the command again

At this point you’ll be dropped in the debugger and you can step forward until
you find the problem.

Profiling CIDER commands

Emacs comes with a built-in
profiler [https://www.gnu.org/software/emacs/manual/html_node/elisp/Profiling.html]. Using
it is pretty simple:

	Start it with M-x profiler-start.

	Invoke some commands.

	Get the report with M-x profiler-report.

!!! Tip

If you intend to share the profiling results with someone it's a good idea to
save the report buffer to a file with <kbd>C-x C-w</kbd>.

Commonly encountered problems (and how to solve them)

REPL not starting

Make sure that your CIDER version matches your cider-nrepl version. Check
the contents of the *Messages* buffer for CIDER-related errors. You should
also check the nREPL messages passed between CIDER and nREPL in
nrepl-messages. If you don’t see anything useful there it’s time to bring
out the big guns.

Debugging the REPL init

To debug CIDER’s REPL initialization it’s a good idea to hook into one of its
entry points. Add a breakpoint to cider-make-repl (C-u C-M-x, while
in its body). Next time you start CIDER you’ll be dropped in the debugger and
you can step forward until you find the problem.

Missing *nrepl-messages* buffer

nREPL message logging is not enabled by default. Set nrepl-log-messages to t
to activate it. Alternatively you can use M-x
nrepl-toggle-message-logging to enable/disable logging temporary within your
current Emacs session. Note that enabling message logging can impact
performance.

cider-debug complains that it “failed to instrument …”

In the REPL buffer, issue the following.

your.namespace> (ns cider.nrepl.middleware.util.instrument)
cider.nrepl.middleware.util.instrument> (def verbose-debug true)

This will cause CIDER to print extensive information to the REPL buffer when you
try to debug an expression (e.g., with C-u
C-M-x). File an issue [https://github.com/clojure-emacs/cider-nrepl/issues/new]
and copy this information.

Debugging freezes & lock-ups

Sometimes a CIDER command might hang for a while (e.g. due to a bug or a
configuration issue). Such problems are super annoying, but are relatively easy
to debug. Here are a few steps you can take in such situations:

	Do M-x toggle-debug-on-quit

	Reproduce the problem

	Hit C-g around 10 seconds into the hang

This will bring up a backtrace with the entire function stack, including
function arguments. So you should be able to figure out what’s going on (or at
least what’s being required).

Warning saying you have to use nREPL 0.4.4+

CIDER currently requires at least nREPL 0.4.4 to work properly (there were some
nasty bugs in older version and no support for tracking where some var was
defined in the source code). Leiningen users can add this to their
profiles.clj to force the proper dependency:

{:repl {:dependencies [[nrepl/nrepl "x.y.z"]]}}

Make sure you add the newer nREPL dependency to the :dependencies key instead
of :plugins (where cider-nrepl Lein plugin resides). That’s a pretty common
mistake.

Generally you’re advised to use the newest nREPL with CIDER, as bugs get fixed
in pretty much every release.

Note, that running cider-jack-in from outside the scope of a project
will result in the older nREPL dependency being used. This is
likely a Leiningen bug.

Missing clojure-… function after CIDER update

Most likely you’ve updated CIDER, without updating clojure-mode as well.

CIDER depends on clojure-mode and you should always update them together, as
the latest CIDER version might depend on functionality present only in the latest
clojure-mode version.

I upgraded CIDER using package.el and it broke

The built-in package manager isn’t perfect and sometimes it messes up. If you
just updated and encountered an error you should try the following before
opening an issue: Go into the .emacs.d/elpa directory, delete any folders
related to CIDER, restart Emacs and then re-install the missing packages. Note
that the order here matters.

I upgraded CIDER using package.el and nothing changed

Emacs doesn’t load the new files, it only installs them on disk. To see the
effect of changes you have to restart Emacs.

CIDER complains of the cider-nrepl version

This is a warning displayed on the REPL buffer when it starts, and usually looks like this:

WARNING: CIDER 0.18.0 requires cider-nrepl x.y.z+, but you’re currently using cider-nrepl a.b.c. Things will break!

where a.b.c might be an actual version, like 0.17.0, or it might be not installed or nil.
The solution to this depends on what you see and on what you’re doing.

You see a number like X.X.X, and you’re starting the REPL with cider-connect

Your project specifies the wrong version for the cider-nrepl middleware. See the
instructions
on the Installation section.

You see not installed or nil, and you’re starting the REPL with cider-connect

To use cider-connect you need to add the cider-nrepl middleware to your project. See the
instructions
on the Installation section.

You see not installed or nil, and you’re starting the REPL with cider-jack-in

	Do C-h v cider-inject-dependencies-at-jack-in, and check that this variable is non-nil.

	Make sure your project depends on at least Clojure 1.7.0.

	If you use Leiningen, make sure your lein --version is at least 2.8.3.

	If you use Boot and you’ve changed cider-boot-parameters, that’s probably the cause.

If the above doesn’t work, you can try specifying the cider-nrepl middleware
manually, as per the
instructions
on the Installation section.

You see a number like X.X.X, and you’re starting the REPL with cider-jack-in

This means you’re manually adding the cider-nrepl middleware in your project,
but you shouldn’t do that because cider-jack-in already does that for
you. Look into the following files, and ensure you’ve removed all references to
cider-nrepl and nrepl: project.clj, build.boot,
~/.lein/profiles.clj and ~/.boot/profile.boot.

I get some error related to refactor-nrepl on startup

The package clj-refactor would normally inject its own middleware on
cider-jack-in, just as CIDER itself would. Usually that’s not a
problem, as long as you’re using compatible versions of CIDER and
clj-refactor, but if you’re getting some error probably that’s not
the case. You’ve got two options to solve this:

	Use compatible versions of the two projects (e.g. their most recent
snapshots or most recent stable releases)

	Disable the clj-refactor middleware injection:

(setq cljr-inject-dependencies-at-jack-in nil)

Up and Running

To use CIDER, you’ll need to connect it to a running nREPL server that
is associated with your program. Most Clojure developers use standard
build tooling such as Leiningen, Boot, or Gradle, and CIDER can
automatically work with those tools to get you up and running
quickly. But those tools are not required; CIDER can connect to an
nREPL server that is already started and is managed separately.

!!! Note

CIDER will automatically work with Leiningen 2.8.3+ or Boot
2.8.2+. Older versions are not supported.

There are two ways to connect CIDER to an nREPL server:

	CIDER can launch an nREPL server for your project from Emacs.

	You can connect CIDER to an already-running nREPL server, managed separately.

The following sections describe each of these methods.

Launch an nREPL Server From Emacs

If you have a Clojure project in your file system and want CIDER to
launch an nREPL session for it, simply visit a file that belongs to
the project, and type M-x cider-jack-in
RET. CIDER will start an nREPL server and automatically
connect to it.

!!! Note

If your project uses `lein`, `boot` or `tools.deps (deps.edn)`,
CIDER will automatically inject all the necessary nREPL
dependencies when it starts the server. CIDER does not currently support
dependency auto-injection for Gradle projects.

Alternatively, you can use C-u M-x cider-jack-in RET to
specify the name of a lein, boot or tools.deps project, without having to
visit any file in it. This option is also useful if your project contains some
combination of project.clj, build.boot and deps.edn and you want to launch
a REPL for one or the other.

!!! Tip

In Clojure(Script) buffers the command `cider-jack-in` is bound to <kbd>C-c C-x (C-)j (C-)j</kbd>.

You can further customize the command line CIDER uses for cider-jack-in by
modifying the following string options:

	cider-lein-global-options, cider-boot-global-options,
cider-clojure-cli-global-options, cider-gradle-global-options:
these are passed to the command directly, in first position
(e.g., -o to lein enables offline mode).

	cider-lein-parameters, cider-boot-parameters,
cider-clojure-cli-parameters, cider-gradle-parameters: these are
usually task names and their parameters (e.g., dev for launching
boot’s dev task instead of the standard repl -s wait).

Note that if you try to run cider-jack-in outside a project
directory, CIDER will warn you and ask you to confirm whether you
really want to do this; more often than not, this is an accident. If
you decide to proceed, CIDER will invoke the command configured in
cider-jack-in-default. Prior to CIDER 0.17, this defaulted to lein
but was subsequently switched to clj, Clojure’s basic startup command.

!!! Tip

You can set `cider-allow-jack-in-without-project` to `t` if you'd like to
disable the warning displayed when jacking-in outside a project.

Connect to a Running nREPL Server

If you have an nREPL server already running, CIDER can connect to
it. For instance, if you have a Leiningen-based project, go to your
project’s directory in a terminal session and type:

$ lein repl :headless

This will start the project’s nREPL server.

If your project uses boot, do this instead:

$ boot repl -s wait (or whatever task launches a repl)

It is also possible for plain clj, although the command is somewhat longer:

$ clj -Sdeps '{:deps {cider/cider-nrepl {:mvn/version "0.21.1"}}}' -m nrepl.cmdline --middleware "[cider.nrepl/cider-middleware]"

Alternatively, you can start nREPL either manually or using the facilities
provided by your project’s build tool (Gradle, Maven, etc).

After you get your nREPL server running, go back to Emacs and connect
to it: M-x cider-connect RET. CIDER will
prompt you for the host and port information, which should have been
printed when the previous commands started the nREPL server in your
project.

!!! Tip

In Clojure(Script) buffers the command `cider-connect` is bound to <kbd>C-c C-x c s</kbd>.

If you frequently connect to the same hosts and ports, you can tell
CIDER about them and it will use the information to do completing
reads for the host and port prompts when you invoke
cider-connect. You can identify each host with an optional label.

(setq cider-known-endpoints
 '(("host-a" "10.10.10.1" "7888")
 ("host-b" "7888")))

Working with Remote Hosts

While most of the time you’d be connecting to a locally running nREPL
server, that was started manually or via cider-jack-in-*, there’s
also the option to connect to remote nREPL hosts. For the sake of security
CIDER has the ability to tunnel a connection over SSH in such cases.
This behavior is controlled by
nrepl-use-ssh-fallback-for-remote-hosts: when true, CIDER will attempt to
connect via ssh to remote hosts when unable to connect directly. It’s
nil by default.

There’s also nrepl-force-ssh-for-remote-hosts which will force the use
of ssh for remote connection unconditionally.

!!! Warning

As nREPL connections are insecure by default you're encouraged to use only SSH
tunneling when connecting to servers running outside of your network.

There’s a another case in which CIDER may optionally leverage the ssh command - when
trying to figure out potential target hosts and ports when you’re doing cider-connect-*.
If cider-infer-remote-nrepl-ports is true, CIDER will use ssh to try to infer
nREPL ports on remote hosts (for a direct connection). That option is also set to nil
by default.

!!! Note

Enabling either of these causes CIDER to use
[TRAMP](https://www.gnu.org/software/tramp/) for some SSH operations, which parses
config files such as `~/.ssh/config` and `~/.ssh/known_hosts`. This is known to
cause problems with complex or nonstandard ssh configs.

You can safely run cider-jack-in-* while working with remote files over TRAMP. CIDER
will handle this use-case transparently for you.

Changelog

An extensive changelog is available here [https://github.com/clojure-emacs/cider/blob/master/CHANGELOG].

Contributing

Issues

Report issues and suggest features and improvements on the
GitHub issue tracker [https://github.com/clojure-emacs/cider/issues]. Don’t ask
questions on the issue tracker - use the support channels instead.

If you want to file a bug, please provide all the necessary info listed in
our issue reporting template (it’s loaded automatically when you create a
new GitHub issue).

It’s usually a good idea to try to reproduce (obscure) bugs in isolation. You
can do this by cloning CIDER’s GitHub repo and running make run-cider inside
it. This will bring up Emacs with only the latest version of CIDER loaded. By
starting fresh, with the latest code, we can ensure that the problem at hand
isn’t already fixed or caused by interactions with other packages.

Patches

Patches in any form are always welcome! GitHub pull requests are even better! :-)

Before submitting a patch or a pull request make sure all tests are
passing and that your patch is in line with the contribution
guidelines [https://github.com/clojure-emacs/cider/blob/master/.github/CONTRIBUTING].

Documentation

Good documentation is just as important as good code.

Consider improving and extending this manual.

Working on the Manual

The manual is generated from the markdown files in the
doc [https://github.com/clojure-emacs/cider/tree/master/doc] folder of CIDER’s
GitHub repo and is published to Read the Docs. The
MkDocs [http://www.mkdocs.org/] tool is used to convert the markdown sources to
HTML.

To make changes to the manual you simply have to change the files under
doc. The manual will be regenerated automatically when changes to those files
are merged in master (or the latest stable branch).

You can install MkDocs locally and use the command mkdocs serve to see the
result of changes you make to the manual locally:

$ cd path/to/cider/repo
$ mkdocs serve

If you want to make changes to the manual’s page structure you’ll have to edit
mkdocs.yml [https://github.com/clojure-emacs/cider/blob/master/mkdocs.yml].

Funding

While CIDER is free software and will always be, the project would benefit immensely from some funding.
Raising a monthly budget of a couple of thousand dollars would make it possible to pay people to work on
certain complex features, fund other development related stuff (e.g. hardware, conference trips) and so on.
Raising a monthly budget of over $5000 would open the possibility of someone working full-time on the project
which would speed up the pace of development significantly.

We welcome both individual and corporate sponsors! We also offer a wide array of funding channels to account
for your preferences (although currently Open Collective [https://opencollective.com/cider] is our preferred funding platform).

If you’re working in a company that’s making significant use of CIDER we’d appreciate it if you suggest to your company
to become a CIDER sponsor.

You can support the development of CIDER, clojure-mode [https://github.com/clojure-emacs/clojure-mode] and inf-clojure [https://github.com/clojure-emacs/inf-clojure] via
Open Collective [https://opencollective.com/cider],
Salt [https://salt.bountysource.com/teams/cider],
Patreon [https://www.patreon.com/bbatsov],
Liberapay [https://liberapay.com/bbatsov/donate] and PayPal.

[image: ../_images/btn_donate_SM.gif]Paypal [https://www.paypal.com/cgi-bin/webscr?cmd=_s-xclick&hosted_button_id=GRQKNBM6P8VRQ]

Open Collective

	[Become a backer [https://opencollective.com/cider#backer]] (for individuals)

	[Become a sponsor [https://opencollective.com/cider#sponsor]] (for companies)

License

Copyright (C) 2012-2016 Tim King, Phil Hagelberg, Bozhidar Batsov, Artur Malabarba and
contributors [https://github.com/clojure-emacs/cider/contributors].

CIDER is distributed under the GNU General Public License, version 3, the same as Emacs.
Type C-h C-c in Emacs to view it.

cider-nrepl is distributed under the Eclipse Public License, the same as Clojure.

Logo

CIDER’s logo was created by @tapeinosyne [https://github.com/tapeinosyne]. You can find
the logo in various formats
here [https://github.com/clojure-emacs/cider/tree/master/logo].

The logo is licensed under a
Creative Commons Attribution-NonCommercial 4.0 International License [http://creativecommons.org/licenses/by-nc/4.0/deed.en_GB].

Release Policy

We’re following SemVer [http://semver.org/] (as much as one can be
following it when the major version is 0). At this point bumps of the
minor (second) version number are considered major releases and always
include new features or significant changes to existing features. API
compatibility between major releases is not a (big) concern (although we try
to break the API rarely and only for a good reason).

The development cycle for the next major
release starts immediately after the previous one has been
shipped. Bugfix/point releases (if any) address only serious bugs and
never contain new features.

Here are a few examples:

	0.5.0 - Feature release

	0.5.1 - Bug-fix release

	0.5.2 - Bug-fix release

	0.6.0 - Feature release

CIDER and cider-nrepl are released independently, but follow the same release policy overall.
CIDER contains references to the cider-nrepl version it supports and would normally inject
the newest cider-nrepl version possible.

Support

CIDER currently has several official & unofficial support channels.

For questions, suggestions and support refer to one of them. Please, don’t
use the support channels to report issues, as this makes them harder to track.

Mailing list

The official mailing list [https://groups.google.com/forum/#%21forum/cider-emacs] is
hosted at Google Groups. It’s a low-traffic list, so don’t be too hesitant to subscribe.

Freenode

We’ve got an unofficial Freenode channel - #clojure-emacs. It’s not actively
monitored by the CIDER maintainers themselves, but still you can get support
from other CIDER users there.

Slack

We’ve got an official Clojurians Slack [https://clojurians.slack.com/] -
#cider. This is usually be best way to get a handle on some of the maintainers
and interact with other CIDER users. The channel is very active! If you need an invite
you can go here [http://clojurians.net/].

There’s also another channel named #emacs for generic Emacs discussions.

Stackoverflow

We’re also encouraging users to ask CIDER-related questions on StackOverflow.

When doing so you should use the
cider [http://stackoverflow.com/questions/tagged/cider] tag (ideally combined
with the tags emacs and clojure).

Bountysource

If you’re willing to pay for some feature to be implemented you can use
Bountysource [https://www.bountysource.com/teams/cider/issues] to place a
bounty for the work you want to be done.

Team

The Core Team

The direction of the project is being stewarded by the CIDER core team. This
group of long-term contributors manage releases, evaluate pull-requests, and
does a lot of the groundwork on major new features.

	Bozhidar Batsov [https://github.com/bbatsov] (author & head maintainer)

	Vitalie Spinu [https://github.com/vspinu]

	Lars Andersen [https://github.com/expez]

CIDER Alumni

In addition, we’d like to extend a special thanks the following retired CIDER
core team members. Lovingly known as The Alumni:

	Tim King [https://github.com/kingtim] (original author)

	Phil Hagelberg [https://github.com/technomancy]

	Hugo Duncan [https://github.com/hugoduncan]

	Steve Purcell [https://github.com/purcell]

	Artur Malabarba [https://github.com/malabarba]

	Michael Griffiths [https://github.com/cichli]

	Jeff Valk [https://github.com/jeffvalk]

Basic Configuration

Like Emacs itself, almost every part of CIDER is configurable. The
CIDER developers have tried to implement some reasonable defaults that
should work for a large portion of the Clojure community, but we know
that there is nothing approaching a “one size fits all” development
environment and we’ve tried to create points of customization that can
account for many different peoples’ preferences. In this way, you
should be able to make CIDER as comfortable as possible for you.

You can see every single customizable configuration option with the command
M-x customize-group RET cider.

This section doesn’t describe every possible customization that CIDER
offers, but here are some of the most popular.

Disable Automatic cider-mode in clojure-mode Buffers

By default, CIDER enables cider-mode in all clojure-mode buffers
after it establishes the first CIDER connection. It will also add a
clojure-mode hook to enable cider-mode on newly-created clojure-mode
buffers. You can override this behavior, however:

(setq cider-auto-mode nil)

Disable Symbol Confirmation

By default, CIDER prompts you for a symbol when it executes
interactive commands that require a symbol (e.g. cider-doc). The
default symbol will be the one at point. If you set
cider-prompt-for-symbol to nil, CIDER will try the symbol at point
first, and only prompt if that fails (this was the behavior in older
CIDER releases).

(setq cider-prompt-for-symbol nil)

Log nREPL Communications

If you want to see all communications between CIDER and the nREPL
server:

(setq nrepl-log-messages t)

CIDER will then create buffers named *nrepl-messages conn-name* for
each connection.

The communication log is tremendously valuable for
debugging CIDER-to-nREPL problems and we recommend you enable it when
you are facing such issues.

Hide Special nREPL Buffers

If you’re finding that *nrepl-connection* and *nrepl-server*
buffers are cluttering up your development environment, you can
suppress them from appearing in some buffer switching commands like
switch-to-buffer(C-x b):

(setq nrepl-hide-special-buffers t)

If you need to make the hidden buffers appear When using
switch-to-buffer, type SPC after issuing the command. The
hidden buffers will always be visible in list-buffers (C-x
C-b).

Prefer Local Resources Over Remote Resources

To prefer local resources to remote resources (tramp) when both are available:

(setq cider-prefer-local-resources t)

Auto-Save Clojure Buffers on Load

Normally, CIDER prompts you to save a modified Clojure buffer when you
type C-c C-k (cider-load-buffer). You can change this
behaviour by adjusting cider-save-file-on-load.

Don’t prompt and don’t save:

(setq cider-save-file-on-load nil)

Just save without prompting:

(setq cider-save-file-on-load t)

Change the Result Prefix for Interactive Evaluation

Change the result prefix for interactive evaluation (not the REPL
prefix). By default the prefix is =>.

(setq cider-eval-result-prefix ";; => ")

To remove the prefix altogether, just set it to the empty string ("").

Use a Local Copy of the JDK API Documentation

If you are targeting the JVM and prefer a local copy of the JDK API
documentation over Oracle’s official copy (e.g., for
JavaSE 8 [http://docs.oracle.com/javase/8/docs/api/]), per nREPL’s
javadoc-info logic (accurate as of 29 Dec 2014) [http://docs.oracle.com/javase/8/docs/api/],
you can arrange your project to include the root path of the local API doc
(i.e., where the index.html is located) to be included on your classpath
(i.e., where the doc HTML files can be located by
clojure.java.io/resource). For example, for Leiningen, with the local API
path being /usr/share/doc/java/api/, put the following line in
project.clj:

:dev {:resource-paths ["/usr/share/doc/java/api/"]}

or the following line in $HOME/.lein/profiles.clj:

:user {:resource-paths ["/usr/share/doc/java/api/"]}

More details can be found here [https://github.com/clojure-emacs/cider/issues/930].

Use a Local Copy of the Java Source Code

When an exception is thrown, e.g. when eval-ing (. clojure.lang.RT foo), a
stack trace pops up. Some places of the stack trace link to Clojure files,
others to Java files. By default, you can click the Clojure file links to
navigate there. If you configure cider-jdk-src-paths, you can also click the
Java file links to navigate there.

On Windows and macOS the JDK source code is bundled with the JDK. On Windows its
typical location is C:\Program Files\Java\{jdk-version}\src.zip
and on macOS its /Library/Java/JavaVirtualMachines/{jdk-version}/Contents/Home/src.zip.

On Linux distributions usually the source code is distributed as a separate package.
Here’s how do get the JDK 8 source on Ubuntu:

sudo apt install openjdk-8-source

The zip is installed to /usr/lib/jvm/openjdk-8/src.zip.

You can download Clojure Java source code from
here [https://repo1.maven.org/maven2/org/clojure/clojure/1.8.0/clojure-1.8.0-sources.jar].

Extract both and configure e.g. like so:

(setq cider-jdk-src-paths '("~/java/clojure-1.8.0-sources"
 "~/java/openjvm-8-src"))

It’s possible to use jar or zip files cider-jdk-src-paths, but extracting
them is better since you get features like ag or dired-jump.

Filter out namespaces in certain namespace-related commands

You can hide all nREPL middleware details from cider-browse-ns* and cider-apropos*
commands by customizing the variable cider-filter-regexps. It should be a list of
regexps matching the pattern of namespaces you want to filter out.

Its default value is '("^cider.nrepl" "^refactor-nrepl" "^nrepl"),
the most commonly used middleware collections/packages.

An important thing to note is that this list of regexps is passed on to the middleware
without any pre-processing. So, the regexps have to be in Clojure format (with twice the number of backslashes)
and not Emacs Lisp. For example, to achieve the above effect, you could also set cider-filter-regexps to '(".*nrepl").

To customize cider-filter-regexps, you could use the Emacs customize UI,
with M-x customize-variable RET cider-filter-regexps.

Or by including a similar snippet along with the other CIDER configuration.

(setq cider-filter-regexps '(".*nrepl"))

Truncate long lines in special buffers

By default contents of CIDER’s special buffers such as *cider-test-report*
or *cider-doc* are line truncated. You can set
cider-special-mode-truncate-lines to nil to make those buffers use word
wrapping instead of line truncating.

This variable should be set before loading CIDER (which means before
require-ing it or autoloading it).

(setq cider-special-mode-truncate-lines nil)

ElDoc

Eldoc is a buffer-local minor mode that helps with looking up Lisp
documentation. When it is enabled, the echo area displays some useful
information whenever there is a Lisp function or variable at point;
for a function, it shows the argument list, and for a variable it
shows the first line of the variable’s documentation string.

CIDER provides a Clojure backend for ElDoc that works out-of-the box, as
long as eldoc-mode is enabled.

[image: ../_images/eldoc.png]Eldoc

Enabling ElDoc

global-eldoc-mode is enabled by default in Emacs 25.1, so you don’t really have
to do anything to enable it.

It will in both source and REPL buffers.

Configuring ElDoc

	CIDER also would show the eldoc for the symbol at point. So in (map inc ...)
when the cursor is over inc its eldoc would be displayed. You can turn off this
behaviour by:

(setq cider-eldoc-display-for-symbol-at-point nil)

	CIDER respects the value of eldoc-echo-area-use-multiline-p when
displaying documentation in the minibuffer. You can customize this variable to change
its behaviour.

eldoc-echo-area-use-multiline-p	Behaviour
————-	————-
t	Never attempt to truncate messages. Complete symbol name and function arglist or variable documentation will be displayed even if echo area must be resized to fit.
nil	Messages are always truncated to fit in a single line of display in the echo area.
truncate-sym-name-if-fit or anything non-nil	Symbol name may be truncated if it will enable the function arglist or documentation string to fit on a single line. Otherwise, behavior is just like t case.

	CIDER will try to add expected function arguments based on the current context
(for example for the datomic.api/q function where it will show the expected
inputs of the query at point), if the variable cider-eldoc-display-context-dependent-info
is non-nil:

(setq cider-eldoc-display-context-dependent-info t)

Indentation

Dynamic Indentation

It is common for macros to require special indentation mechanisms. This is most
common in macros that start with do, def, or with-. CIDER has some
heuristics to detect these macros, but it also lets you explicitly specify how
a macro should be indented.

Here’s a simple example of how someone would specify the indent spec for a macro
they’ve written (using an example in core):

(defmacro with-in-str
 "[DOCSTRING]"
 {:style/indent 1}
 [s & body]
 ...cut for brevity...)

And here’s a more complex one:

(defmacro letfn
 "[DOCSTRING]"
 {:style/indent [1 [[:defn]] :form]}
 [fnspecs & body]
 ...cut for brevity...)

Don’t worry if this looks intimidating. For most macros the indent spec should
be either just a number, or one of the keywords :defn or :form. A full
description of the spec is provided in the
indent spec section of the manual.

If you don’t want to use this feature, you can disable it by setting
cider-dynamic-indentation to nil in your Emacs init file.

(setq cider-dynamic-indentation nil)

Miscellaneous Configuration

Overlays

When you evaluate code in Clojure files, the result is displayed in the buffer
itself, in an overlay right after the evaluated code. If you want this overlay
to be font-locked (syntax-highlighted) like Clojure code, set the following
variable.

(setq cider-overlays-use-font-lock t)

You can disable overlays entirely (and display results in the echo-area at the
bottom) with the cider-use-overlays variable.

(setq cider-use-overlays nil)

Minibuffer completion

Out-of-the box CIDER uses the standard completing-read Emacs mechanism. While
it’s not fancy it certainly gets the job done (just press TAB). There
are, however, ways to improve upon the standard completion if you wish to.

icomplete

icomplete is bundled with Emacs and enhances the default minibuffer completion:

(require 'icomplete)

You can learn more about icomplete
here [https://www.gnu.org/software/emacs/manual/html_node/emacs/Icomplete.html].

ido

ido is also bundled with Emacs and offers more features than icomplete.
If you are using ido, be sure to use both ido-everywhere
and ido-completing-read+ [https://github.com/DarwinAwardWinner/ido-completing-read-plus].
You might also want to install ido-flex [https://github.com/lewang/flx].

ivy (recommended)

If you’re fine with installing a third-party package for enhanced minibuffer
completion you can’t go wrong with the modern and versatile
ivy [http://oremacs.com/2015/04/16/ivy-mode/].

Syntax highlighting

Dynamic syntax highlighting

CIDER can syntax highlight symbols that are known to be defined. By default,
this is done on symbols from the clojure.core namespace, as well as macros
from any namespace. If you’d like CIDER to also colorize usages of functions
and variables from any namespace, do:

(setq cider-font-lock-dynamically '(macro core function var))

Here’s how code looks without dynamic syntax highlighting.

[image: ../_images/dynamic_font_lock_off.png]Dynamic Font-lock Off

And here’s how to the code looks when it’s turned on.

[image: ../_images/dynamic_font_lock_on.png]Dynamic Font-lock On

Syntax highlighting for reader conditionals

By default CIDER will apply font-locking to unused reader conditional
expressions depending on the buffer CIDER connection type.

[image: ../_images/reader_conditionals.png]Reader Conditionals

You can disable this behavior by adjusting cider-font-lock-reader-conditionals:

(setq cider-font-lock-reader-conditionals nil)

Customizing CIDER faces

CIDER defines a few custom faces that you might want to adjust (although normally your color theme
should take care of them):

	cider-deprecated-face - used for syntax highlighting deprecated vars

	cider-instrumented-face - used for syntax highlighting instrumented for debugging vars

	cider-traced-face - used for syntax highlighting traced vars

	cider-reader-conditional-face - used for syntax highlighting inactive reader conditional branches

Basic Usage

CIDER comes with a powerful REPL that complements the interactive
development functionality in cider-mode. Using the CIDER REPL you
can experiment with your running program, test functions, or just
explore a new library you’re interested in using. The CIDER REPL offers a number of advanced features:

	auto-completion

	font-locking (the same as in clojure-mode)

	quick access to many CIDER commands (e.g. definition and documentation lookup, tracing, etc)

	pretty-printing of evaluation results

	eldoc support

	highly customizable REPL prompt

Interacting with the REPL

Interacting with CIDER’s REPL is pretty simple - most of the time
you’d just write expressions there and press RET to
evaluate them.

But the REPL is a bit more powerful than that and it allows you to do some things that might not be available in
other Clojure REPLs. Some examples of such things would be:

	You can close an incomplete expression with C-Ret

	You can enter a multi-line expression by pressing C-j at the end of each line

	You can quickly jump to the definition of a symbol (.) or to its documentation (C-c C-d d)

	You can clear the output of the last expression with C-c C-o

	You can clear the REPL buffer with C-u C-c C-o

	You can jump between your source buffers and the REPL with C-c C-z

	You can jump between your Clojure and ClojureScript REPLs with C-c M-o

On top of this the REPL is extremely configurable and you can tweak almost every aspect of it.

Interrupting Evaluations

If you accidentally try to evaluate something that’s going to take a lot of time (if it finishes at all), you
can interrupt the rouge evaluation operation by pressing C-c C-c.

!!! Tip

Note that this is different from the keybinding for interrupting evaluations in source buffers,
namely <kbd>C-c C-b</kbd>.

Quitting a REPL

When you’re done with a REPL you can dispose of it with C-c C-q.

Please, avoid killing REPL buffers with C-c C-k

Known Limitations

Performance can degrade when the REPL buffer grows very large. This is
especially true if either cider-repl-use-clojure-font-lock or
nrepl-log-messages are enabled. You can use cider-repl-clear-output to
either clear the result of the previous evaluation, or with a prefix argument
clear the entire REPL buffer.

Very long lines are guaranteed to bring Emacs to a crawl, so using a value of
cider-print-fn that wraps lines beyond a certain width (i.e. any of the
built-in options except for pr) is advised.

REPL Configuration

Behavior on connect

Normally, when you first establish a REPL connection, the REPL buffer is
auto-displayed in a separate window. You can suppress this behaviour
like this:

(setq cider-repl-pop-to-buffer-on-connect nil)

If you want the REPL buffer to be auto-displayed, but don’t want it to be
focused, use this:

(setq cider-repl-pop-to-buffer-on-connect 'display-only)

Behavior on switch

By default C-c C-z will display the REPL buffer in a
different window. You can make C-c C-z switch to the CIDER
REPL buffer in the current window:

(setq cider-repl-display-in-current-window t)

Customizing the REPL prompt

You can customize the REPL buffer prompt by setting
cider-repl-prompt-function to a function that takes one
argument, a namespace name. For convenience, CIDER provides three
functions that implement common formats:

	cider-repl-prompt-lastname:

ssl>

	cider-repl-prompt-abbreviated:

l.c.ssl>

	cider-repl-prompt-default:

leiningen.core.ssl>

By default, CIDER uses cider-repl-prompt-default.

You may, of course, write your own function. For example, in leiningen there
are two namespaces with similar names - leiningen.classpath and
leiningen.core.classpath. To make them easily recognizable you can either
use the default value or you can opt to show only two segments of the
namespace and still be able to know which is the REPL’s current
namespace. Here is an example function that will do exactly that:

(defun cider-repl-prompt-show-two (namespace)
 "Return a prompt string with the last 2 segments of NAMESPACE."
 (let ((names (reverse (subseq (reverse (split-string namespace "\\.")) 0 2))))
 (concat (car names) "." (cadr names) "> ")))

TAB Completion

You can control the TAB key behavior in the REPL using the
cider-repl-tab-command variable. While the default command
cider-repl-indent-and-complete-symbol should be an adequate choice for
most users, it’s very easy to switch to another command if you wish
to. For instance if you’d like TAB to only indent (maybe
because you’re used to completing with M-TAB) use the
following:

(setq cider-repl-tab-command #'indent-for-tab-command)

Auto-scrolling the REPL on Output

Prior to version 0.21.0, the REPL buffer would be automatically re-centered
whenever any output was printed, so that the prompt was on the bottom line of
the window, displaying the maximum possible amount of output above it. This is
no longer the default behaviour – you can now replicate it by setting the
built-in option scroll-conservatively, for example:

(add-hook 'cider-repl-mode-hook '(lambda () (setq scroll-conservatively 101)))

Result Prefix

You can change the string used to prefix REPL results:

(setq cider-repl-result-prefix ";; => ")

Which then results in the following REPL output:

user> (+ 1 2)
;; => 3

By default, REPL results have no prefix.

Customize the REPL Buffer’s Name

The REPL buffer name has the format *cider-repl project-name*. You
can change the separator from a space character to something else by
setting nrepl-buffer-name-separator.

(setq nrepl-buffer-name-separator "-")

The REPL buffer name can also display the port on which the nREPL server is running.
The buffer name will look like *cider-repl project-name:port*.

(setq nrepl-buffer-name-show-port t)

Font-locking

Normally, code in the REPL is font-locked the same way as in
clojure-mode. Before CIDER 0.10, by default, REPL input was
font-locked with cider-repl-input-face (after pressing
Return) and results were font-locked with
cider-repl-result-face. If you want to restore the old behaviour
use:

(setq cider-repl-use-clojure-font-lock nil)

Note that enabling font-locking in the REPL can negatively impact performance.

Pretty printing in the REPL

By default the REPL always prints the results of your evaluations using the
printing function specified by cider-print-fn.

!!! Note

This behaviour was changed in CIDER 0.20. In prior CIDER releases
pretty-printing was disabled by default.

You can temporarily disable this behaviour and revert to the default behaviour
(equivalent to clojure.core/pr) using M-x cider-repl-toggle-pretty-printing.

If you want to disable using cider-print-fn entirely, use:

(setq cider-repl-use-pretty-printing nil)

Note well that disabling pretty-printing is not advised. Emacs does not handle
well very long lines, so using a printing function that wraps lines beyond a
certain width (i.e. any of them except for pr) will keep your REPL running
smoothly.

See this for more information on configuring printing.

Displaying images in the REPL

Starting with CIDER 0.17 (Andalucía) expressions that evaluate to
images will be rendered as images in the REPL. You can disable this
behavior if you don’t like it.

(setq cider-repl-use-content-types nil)

Alternatively, you can toggle this behaviour on and off using M-x
cider-repl-toggle-content-types.

Customizing the initial REPL namespace

Normally, the CIDER REPL will start in the user namespace. You can
supply an initial namespace for REPL sessions in the repl-options
section of your Leiningen project configuration:

:repl-options {:init-ns 'my-ns}

Customizing newline interaction

Ordinarily, Return immediate sends a form for
evaluation. If you want to insert a newline into the REPL buffer as
you’re editing, you can do so using C-j. If you are
entering a lot of longer forms that span multiple lines, it may be
more convenient to change the keybindings:

(define-key cider-repl-mode-map (kbd "RET") #'cider-repl-newline-and-indent)
(define-key cider-repl-mode-map (kbd "C-<return>") #'cider-repl-return)

This will make Return insert a newline into the REPL buffer
and C-

 REPL history browser

REPL history browser

You can browse your REPL input history with the command M-x
cider-repl-history. This command is bound to C-c M-p
in cider-repl-mode buffers and is also available via the
history shortcut.

The history is displayed in reverse order, with the most recent input
at the top of the buffer, and the oldest input at the bottom. You can
scroll through the history, and when you find the history item you
were looking for, you can insert it from the history buffer into your
REPL buffer.

[image: ../_images/history_browser.png]History Browser

Mode

The history buffer has its own major mode,
cider-repl-history-mode. This is derived from clojure-mode, so you
get fontification in the history buffer. This mode supports the
expected defcustom hook variable, cider-repl-history-hook.

Insertion

Where you use the history buffer to insert text into the REPL buffer,
the exact behavior depends on the location of the cursor in the buffer
prior to the insertion.

Typically, when you’re actively using the REPL, your cursor will be at
the end of the REPL buffer (point-max). In this case, the text is
inserted at the end of the buffer and the point advances to the end of
the inserted text (as if point was pushed by along by the text as it
was inserted).

In the unusual case where you invoke the history browser when your
cursor is not at the end of the REPL buffer, the inserted text will
still be inserted at the end of the buffer (point-max), but the
point is not modified.

CIDER inserts the text without a final newline, allowing you to edit
it. When you are ready, hit Return to have it evaluated by
the REPL.

Quitting

If you select an input, the text will be inserted into the REPL buffer
and the history buffer will automatically quit. If you decide you want
to quit without inserting any text at all, you can explicitly quit by
running cider-repl-history-quit (see keyboard shortcuts). Because
of the initialization and cleanup that is done when using the history
buffer, it is better to quit properly rather than just switch away
from the history buffer.

When you quit the history buffer, CIDER can restore the buffer and
window configuration in a few different ways. The behavior is
controlled by cider-repl-history-quit-action, which can be assigned
one of several values:

	quit-window restores the window configuration to what it was before.
This is the default.

	delete-and-restore restores the window configuration to what it was before,
and kills the *cider-repl-history* buffer.

	kill-and-delete-window kills the *cider-repl-history* buffer, and
deletes the window.

	bury-buffer simply buries the *cider-repl-history* buffer, but keeps the
window.

	bury-and-delete-window buries the buffer, and deletes the window
if there is more than one window.

	any other value is interpreted as the name of a function to call

Filtering

By invoking cider-repl-history-occur from the history buffer, you
will be prompted for a regular expression. The history buffer will be
filtered to only those inputs that match the regexp.

Preview and Highlight

When cider-repl-history-show-preview is non-nil, CIDER displays an [overlay]
(https://www.gnu.org/software/emacs/manual/html_node/elisp/Overlays.html)
of the currently selected history entry, in the REPL buffer.

If you do not properly quit from browsing the history (i.e., if you
just C-x b away from the buffer), you may be left with an
unwanted overlay in your REPL buffer. If this happens, you can clean
it up with M-x cider-repl-history-clear-preview.

By default, cider-repl-history-show-preview is nil (disabled).

There is a related feature to highlight the entry once it is actually
inserted into the REPL buffer, controlled by the variable
cider-repl-history-highlight-inserted-item, which can be set to the
following values:

	solid highlights the inserted text for a fixed period of time.

	pulse causes the highlighting to fade out gradually.

	t selects the default highlighting style, which is currently
pulse.

	nil disables highlighting. This is the default value for
cider-repl-history-highlight-inserted-item.

When cider-repl-history-highlight-inserted-item is non-nil, you
can customize the face used for the inserted text with the variable
cider-repl-history-inserted-item-face.

Additional Customization

There are quite a few customizations available, in addition to the ones
already mentioned.

	cider-repl-history-display-duplicates - when set to nil, will not display any
duplicate entries in the history buffer. Default is t.

	cider-repl-history-display-duplicate-highest - when not displaying duplicates,
this controls where in the history the one instance of the duplicated text
is displayed. When t, it displays the entry in the highest position
applicable; when nil, it displays it in the lowest position.

	cider-repl-history-display-style - the history entries will often be more than
one line. The package gives you two options for displaying the entries:

	separated - a separator string is inserted between entries; entries
may span multiple lines. This is the default.

	one-line - any newlines are replaced with literal \n strings, and
therefore no separator is necessary. Each \n becomes a proper newline
when the text is inserted into the REPL.

	cider-repl-history-separator - when cider-repl-history-display-style is separated,
this gives the text to use as the separator. The default is a series of ten
semicolons, which is, of course, a comment in Clojure. The separator could be
anything, but it may screw up the fontification if you make it something weird.

	cider-repl-history-separator-face - specifies the face for the separator.

	cider-repl-history-maximum-display-length - when nil (the default), all history
items are displayed in full. If you prefer to have long items abbreviated,
you can set this variable to an integer, and each item will be limited to that
many characters. (This variable does not affect the number of items displayed,
only the maximum length of each item.)

	cider-repl-history-recenter - when non-nil, always keep the current entry at the
top of the history window. Default is nil.

	cider-repl-history-resize-window - whether to resize the history window to fit
its contents. Value is either t, meaning yes, or a cons pair of integers,
(MAXIMUM . MINIMUM) for the size of the window. MAXIMUM defaults to the window
size chosen by pop-to-buffer; MINIMUM defaults to window-min-height.

	cider-repl-history-highlight-current-entry - if non-nil, highlight the currently
selected entry in the history buffer. Default is nil.

	cider-repl-history-current-entry-face - specifies the face for the history-entry
highlight.

	cider-repl-history-text-properties - when set to t, maintains Emacs text
properties on the entry. Default is nil.

Key Bindings

There are a number of important keybindings in history buffers.

Keyboard shortcut | Description
———————————|——————————-
n | Go to next (lower, older) item in the history.
p | Go to previous (higher, more recent) item in the history.
RET or SPC | Insert history item (at point) at the end of the REPL buffer, and quit.
l (lower-case L) | Filter the command history (see Filtering, above).
s | Regexp search forward.
r | Regexp search backward.
q | Quit (and take quit action).
U | Undo in the REPL buffer.

 REPL Keybindings

REPL Keybindings

Here’s a list of the keybindings that are available in CIDER’s REPL:

Keyboard shortcut | Description
————————————-|——————————
RET | Evaluate the current input in Clojure if it is complete. If incomplete, open a new line and indent. If the current input is a blank string (containing only whitespace including newlines) then clear the input without evaluating and print a fresh prompt. If invoked with a prefix argument is given then the input is evaluated without checking for completeness.
C-RET | Close any unmatched parenthesis and then evaluate the current input in Clojure.
C-j | Open a new line and indent.
C-c C-o | Remove the output of the previous evaluation from the REPL buffer. With a prefix argument it will clear the entire REPL buffer, leaving only a prompt.
C-c M-o | Switch between the Clojure and ClojureScript REPLs for the current project.
C-c C-u | Kill all text from the prompt to the current point.
C-c C-b
 C-c C-c| Interrupt any pending evaluations.
C-up
 C-down | Go to to previous/next input in history.
M-p
 M-n | Search the previous/next item in history using the current input as search pattern. If M-p/M-n is typed two times in a row, the second invocation uses the same search pattern (even if the current input has changed).
M-s
 M-r | Search forward/reverse through command history with regex.
C-c C-n
 C-c C-p | Move between the current and previous prompts in the REPL buffer. Pressing RET on a line with old input copies that line to the newest prompt.
TAB | Complete symbol at point.
C-c C-d d
 C-c C-d C-d | Display doc string for the symbol at point. If invoked with a prefix argument, or no symbol is found at point, prompt for a symbol
C-c C-d j
 C-c C-d C-j | Display JavaDoc (in your default browser) for the symbol at point. If invoked with a prefix argument, or no symbol is found at point, prompt for a symbol.
C-c C-d r
 C-c C-d C-r | Lookup symbol in Grimoire.
C-c C-d a
 C-c C-d C-a | Apropos search for functions/vars.
C-c C-d f
 C-c C-d C-f | Apropos search for documentation.
C-c C-z | Switch to the previous Clojure buffer. This complements C-c C-z used in cider-mode.
C-c M-i | Inspect expression. Will act on expression at point if present.
C-c M-n | Select a namespace and switch to it.
C-c C-. | Jump to some namespace on the classpath.
C-c M-t v | Toggle var tracing.
C-c M-t n | Toggle namespace tracing.
C-c C-t t
 C-c C-t C-t | Run test at point.
C-c C-t g
 C-c C-t C-g | Re-run the last test you ran.
C-c C-t n
 C-c C-t C-n | Run tests for current namespace.
C-c C-t l
 C-c C-t C-l | Run tests for all loaded namespaces.
C-c C-t p
 C-c C-t C-p | Run tests for all project namespaces. This loads the additional namespaces.
C-c C-t r
 C-c C-t C-r | Re-run test failures/errors.
C-c C-t b
 C-c C-t C-b | Show the test report buffer.
C-c C-q | Quit the current nREPL connection. With a prefix argument it will quit all connections.

!!! Tip

There's no need to memorize this list. In any REPL buffer you'll have a `REPL`
menu available, which lists all the most important commands and their
keybindings. You can also invoke `C-h f RET cider-repl-mode` to get a list of the
keybindings for `cider-repl-mode`.

REPL Shortcuts

In the REPL you can also use “shortcut commands” by pressing , at the
beginning of a REPL line. You’ll be presented with a list of commands you can
quickly run (like quitting, displaying some info, clearing the REPL, etc). The
character used to trigger the shortcuts is configurable via
cider-repl-shortcut-dispatch-char. Here’s how you can change it to ;:

(setq cider-repl-shortcut-dispatch-char ?\;)

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_images/cider-which-key.png
projects/cider-demo/src/cider_demolcore.cl
File Edit Options Buffers Tools Clojure CIDER Help
(ns cider-demo.core)

(defn foo
"I don't do a whole lot.

[x]
(println x "Hello, World!")

(foo "something")

core.clj (9,0) (Clojure , Anzu Projectile[cider-demo] WK => supe v y company
cider-apropos h > cider-grimoire-web C-a > cider-apropos C-h 5 cider-grimoire-web
cider-doc j » cider-javadoc > cider-doc C-j » cider-javadoc
cider-apropos-documentation r > cider-grimoire > cider-apropos-documentation C-r > cider-grimoire

C-d- [C-h

c-d
c-f

_images/cider_debugger.gif
(defn

fibo-iter

([n] (fibo-iter @ 1 n))
([curr nxt n]li
(cond

(zero? n) curr
:else (recur nxt (+ curr nxt) (dec n))))) => #'c

(fibo-iter 10)

_images/btn_donate_SM.gif
& D
" Donate

_images/code_completion.png
(map}]
—ixk— cider_demo/core.clj All of 526 (50,4) (Clojure , Projectile[cider—demo] WK => super-s:

[duick on a completion to select it.
In this buffer, type RET to select the completion near point.

Possible completions are:
map
map?

map-entry? map-indexed
mapcat mapv
*Completionsx

_images/completion-annotations.png
cljs.user> (o
IoihIIIIIIIIIIIIIIIIIIIIIIIII

object-array (cljs.core) <f>

object? (cljs.core) <f>
odd? (cljs.core) <f>
om-tut.core <n>
om.core <n>
om.dom <n>

or (cljs.core) <m>

_images/cider_see_also.gif
104 =(defn test-flg

105 | "Test function.

106 | Also see: 'clojure.core/map’, ‘clojure.core/reduce’, “defn’,

107 | You can reference variables like “thor', ‘kubaru.data.zookeeper/yoda' .
108 | Also works with references to java interop forms, ‘java.lang.String/.length*."
100 | 0O

10 | (+11))

111

112

113

114

115

116

17

118

119

120

121

122 N
123

124

125

126

127

- core.clj (104,12) Git:master (A ws Paxedit company

Kubaru, core/test-fn: C[1)

_images/classpath_browser.png
cider-classpath

fiusers/bozhidar/projects/cider-demo/test

/Users/bozhidar/projects/cider-demo/src

/Users/bozhidar/projects/cider—-demo/dev-resources

/Users/bozhidar/projects/cider-demo/resources

/Users/bozhidar/projects/cider-demo/target/classes
/Users/bozhidar/.m2/repository/com/fasterxml/jackson/core/jackson-core/2.0.6/jackson-core-2.0.6.jar
/Users/bozhidar/.m2/repository/org/clojure/clojure/1.8.0/clojure-1.8.0.jar
/Users/bozhidar/.m2/repository/com/taoensso/encore/2.36.2/encore-2.36.2.jar
/Users/bozhidar/.m2/repository/org/tcrawley/dynapath/0.2.3/dynapath-0.2.3.jar
/Users/bozhidar/.m2/repository/clj-http-lite/clj-http-lite/0.2.0/clj-http-lite-0.2.0.jar
/Users/bozhidar/.m2/repository/com/taoensso/truss/1.1.1/truss-1.1.1. jar
/Users/bozhidar/.m2/repository/io/aviso/pretty/0.1.23/pretty-0.1.23. jar
/Users/bozhidar/.m2/repository/com/fasterxml/jackson/dataformat/jackson-dataformat-smile/2.0.6/jackson—-dataformat-smil
/Users/bozhidar/.m2/repository/org/clojure/tools. reader/0.10.0/tools. reader-0.10.0.jar
/Users/bozhidar/.m2/repository/clojure-complete/clojure-complete/0.2.4/clojure-complete-0.2.4.jar
/Users/bozhidar/.m2/repository/com/taoensso/timbre/4.3.1/timbre-4.3.1.jar
/Users/bozhidar/.m2/repository/org/thnetos/cd-client/0.3.6/cd-client-0.3.6.jar
/Users/bozhidar/.m2/repository/org/clojure/tools.nrepl/0.2.12/tools.nrepl-0.2.12.jar
/Users/bozhidar/.m2/repository/slingshot/slingshot/0.10.3/slingshot-0.10.3.jar
/Users/bozhidar/.m2/repository/cider/cider-nrepl/0.12. 0-5NAPSHOT/c1der-nrepl-o.12.0-SNAPSHOT.jar
/Users/bozhidar/.m2/repository/cheshire/cheshire/4.0.3/cheshire-4.0.3.jar
/Library/Java/JavaVirtualMachines/jdk1.8.0_31. jdk/Contents/Home/src.zip
/Library/Java/JavaVirtualMachines/jdk1.8.0_31. jdk/Contents/Home/lib/tools. jar
/Library/Java/JavaVirtualMachines/jdk1.8.0_31. jdk/Contents/Home/jre/lib/ext/cldrdata. jar
/Library/Java/JavaVirtualMachines/jdk1.8.0_31. jdk/Contents/Home/jre/lib/ext/dnsns.jar
/Library/Java/JavaVirtualMachines/jdk1.8.0_31. jdk/Contents/Home/jre/lib/ext/jfxrt.jar
/Library/Java/JavaVirtualMachines/jdk1.8.0_31. jdk/Contents/Home/jre/lib/ext/localedata. jar
/Library/Java/JavaVirtualMachines/jdk1.8.0_31. jdk/Contents/Home/jre/lib/ext/nashorn.jar
/Library/Java/JavaVirtualMachines/jdk1.8.0_31. jdk/Contents/Home/jre/lib/ext/sunec.jar
/Library/Java/JavaVirtualMachines/jdk1.8.0_31. jdk/Contents/Home/jre/lib/ext/sunjce_provider.jar
/Library/Java/JavaVirtualMachines/jdk1.8.0_31. jdk/Contents/Home/jre/lib/ext/sunpkcs1l. jar
/Library/Java/JavaVirtualMachines/jdk1.8.0_31. jdk/Contents/Home/jre/lib/ext/zipfs.jar
/System/Library/Java/Extensions/MRJToolkit. jar

mmmmmmmmmmm

xcider-classpathx
Mark set

_images/dynamic_font_lock_off.png
emacs Prelude - ~/projects/clojure/fizzbuzz/src/fizzbuzz/core.clj

(defn fizzbuzz
"standard fizzbuzz"
[n]

(cond
(zero? n) n
(zero? (mod n 15)) "fizzbuzz"
(zero? (mod n 5)) "buzz"
(zero? (mod n 3)) "fizz"
:else n))

(defn fizz

[1
(println "yo this worked")
(fizzbuzz 44))

257 1:14 - -[fizzbuzz]src/fizzbuzz/core.clj All :master Clojure WK

;5 Above all else - don’t panic! In case of an emergency - procure
;5 some (hard) cider and enjoy it responsibly!

;5 You can remove this message with the ‘cider-repl-clear-help-banner’ command.
;5 You can disable it from appearing on start by setting
;7 ‘cider-repl-display-help-banner’ to nil.

2.0k 43: 6 Ux-*cider-repl fizzbuzz* Bot REPL WK Helm +
Beginning of buffer

_images/dynamic_font_lock_on.png
emacs Prelude - ~/projects/clojure/fizzbuzz/src/fizzbuzz/core.clj

(ns fizzbuzz.core)

(defn fizzbuzz
"standard fizzbuzz"
[n]

(cond
(zero? n) n
(zero? (mod n 15)) "fizzbuzz"
(zero? (mod n 5)) "buzz"
(zero? (mod n 3)) "fizz"
:else n))

(defn fizz

[1
(println "yo this worked")
(fizzbuzz 44))

257 12: 0 - -[fizzbuzz]src/fizzbuzz/core.clj All :master Clojure WK
;5 Above all else - don’t panic! In case of an emergency - procure

;5 some (hard) cider and enjoy it responsibly!

;5 You can remove this message with the ‘cider-repl-clear-help-banner’ command.
;5 You can disable it from appearing on start by setting

;7 ‘cider-repl-display-help-banner’ to nil.

user>
fizzbuzz.core> []

2.0k 44:15 Ux-*cider-repl fizzbuzz* Bot REPL WK Helm +
Quit

_images/eldoc.png
(map inc (range 1 [])
—ixk— cider_demo/core.clj All of 550 (58,18) (Clojure
clojure.core/range: ([]1 [end] [start end] [start end stepl)

_images/history_browser.png
Emacs—x86_64-10_9 Prelude - *cider-repl-history*

cider-deno. core> (fact-rec 5)
120
cider-deno. core> (fibo-rec 6)
8
cider-deno. core> (fact-rec 10)
3628800
cider-deno. core> (fact-rec 15)
1307674368000
cider-deno. core> *nsk
#namespace [cider—deno. core]
cider-deno. core> (fibo-rec 7)
13
cider-deno. core> []
2.2k 55:17 ~x—cider-repl cider-demok Bot REPL
(fibo-rec 7)

ansx

lifact-rec 15)

(fact-rec 10)
(Fibo-rec 6)

(fact-rec 5)

127 5: @ -Axcider-repl-historyx ALL History

_images/menu_example.png
Clojure.

YASnippet

CIDER CIDER Eval

Complete symbol

Documentation
Find Guap to)
Macrosspand
Test

Delug

Browse

Help

SetREPL o thisns Colin
Switeh to REFL cecs
(& REPL Pretiy Print
Clear latest output Ce Co
Clearall autput G CeCo

Configure the REPL

_images/enlighten_disabled.png
(defn foo [x]

(let [y (* 3 xJ]
(+ x ¥)))

(defn bar [x]
(dotimes [1 Xx]
(foo 1)))

Cbar S

_images/enlighten_enabled.png
(defn

foo

[x]

(let [y (* 3 x4)]
(+ x4 yl2))) => 16

(defn

bar

[x]

(dotimes [1

(

(bar

foo

) |

14)))

x5]

=> nil

_images/spec_browser.png
_|
_Iring/request

(s/keys
rreq-un [:ring.
ring.
ring.
ring.
ring.
ring.
ring.
ring.
ropt-un [:ring.
ring.
Back

1 UR-*cider-spec-browser*

req
req
req
req
req
req
req
req
req
req

ues
ues
ues
ues
ues
ues
ues
ues
ues
ues

/server-port
/server-name
/remote-addr
Juri

/scheme
/protocol
/headers
/request-method]
/query-string
/body])

ALL browse-spec

[bla|cider |cider-nrepl [main]

_images/spec_browser_all.png
A1l specs matching regex ‘ring' in registry

iring.
iring.
iring.
iring.
iring.
iring.
iring.
iring.
iring.
iring.
iring.
iring.
iring.
iring.
iring.
iring.
iring.
iring.
iring.
iring.
iring.
iring.
iring.
iring.
iring.
iring.
iring.

async.handler/args
async.handler/ret
async/handler
core/error
http/field-name
http/field-value
request/body
request/header-name
request/header-value
request/headers
request/protocol
request/query-string
request/remote-addr
request/request-method
request/scheme
request/server-name
request/server-port
request/uri
response/body
response/header -name
response/header-value
response/headers
response/status
sync+async/handler
sync.handler/args
sync.handler/ret
sync/handler

:ring/handler
:ring/request
:ring/response

1 UR-*cider-spec-browser* A1l browse-spec

[bla|cider|cider-nrepl|main]

_images/ns_browser.png
clojure.core

*cider-ns-browserk
Blojure. core/*clojure-versionx

The version info for Clojure core, as a map containing :major :minor
:incremental and :qualifier keys. Feature releases may increment

:minor and/or :major, bugfix releases will increment :incremental.
Possible values of :qualifier include "GA", "SNAPSHOT", "RC-x" "BETA-x"

source

xcider-dock

_images/reader_conditionals.png
Mcore/defn— "{:dynamic true} assert-valid-fdecl

"A good fdecl looks Like (([a] ...) ([a bl ...)) near the end of defn."
[fdect]
(core/uhen (empty? fdecl)

(throw

#20:clj (IllegalArgunentException. "Parameter declaration missing")
:cljs (Js/Error. "Parameter declaration missing"))))

(core/let [iﬁ::dz(ls

3
(I (seq? %)
(first %)
(throw
#2(:clj (ILlegalArgumentException.
(if (seq? (first fdecl))
(core/str "Invalid signature \""
%
"* should be a List")
(core/str “Parameter declaration *"
%
“* should be a vector")))
scljs (Js/Error.
Gif (seq? (First fdecl))
(core/str *Invalid signature \"*
%
“\" should be a_List")
(core/str “Paraneter declaration \""
%
"\" should be a vector"))))))
fdecl)
bad-args (seq (remove #(vector? %) argdec(s))]
(core/uhen bad-args
(throw
#2(:clj (ILlegalArgumentException.
(core/str "Parameter declaration \"" (first bad-args)
"* should be a vector"))
scljs (js/Error.
(core/str "Paraneter declaration \"" (First bad-args)
"\" should be a vector")))))))

/.. /tmp/clojurescript/src/main/clojure/cLis/core.clic

¥ master Clojure LN 1:0 Bot

_images/tracing.png
(defn fact-rec [n]
(if (=n1
1
* n (fact-rec (dec n)))))

(defn [n]
(case n
(]
11

+ (Fibo-red (dec n)) (Fibo-red] (- n 2)))))

(defn fibo-iter
([n] (fibo-iter @ 1 n))
([curr nxt n
cond
(zero? n) curr
:else (recur nxt (+ curr nxt) (dec n)))))

cider_demo/core.clj

cider-repl cider-demo

cider-demo.core> ([fibo-rec| 5)

5
cider-demo.core> |

xcider-repl cider-demox

_static/ajax-loader.gif

_images/spec_browser_gen_example.png
:ring/request

(s/keys

rreq-un [:ring.
ring.
ring.
ring.
ring.
ring.
ring.
ring.
ropt-un [:ring.
ring.

Back I

15 UR-*cider-spec-browser*

req
req
req
req
req
req
req
req
req

req

mouse-2, RET: Push this button

ues
ues
ues
ues
ues
ues
ues
ues
ues
ues

/server-port
/server-name
/remote-addr
Juri

/scheme
/protocol
/headers
/request-method]
/query-string
/body])

ALL browse-spec

[blacider,

Example of: :ring/request

{:server-port 1673,

:server-name "50059Qw1p22VH1pi